Analysis of Relationship between Underground Part Environment Control and Growth and Yield of Sweet Pepper in Greenhouses as Affected by Covering Materials

피복재 종류에 따른 착색단고추 재배온실의 지하부 환경 관리와 생육 및 생산성과의 관계 분석

  • Kim, Ho-Cheol (Division of Horticulture and Pet Animal-Plant Science, Wonkwang University) ;
  • Park, Su-Min (Division of Horticulture and Pet Animal-Plant Science, Wonkwang University) ;
  • Lee, Jeong-Hyun (Department of Horticulture & Plant biotechnology, Chonnam National University) ;
  • Kang, Jong-Goo (Department of Horticulture, Sunchon National University) ;
  • Bae, Jong-Hyang (Division of Horticulture and Pet Animal-Plant Science, Wonkwang University)
  • 김호철 (원광대학교 원예.애완동물학부) ;
  • 박수민 (원광대학교 원예.애완동물학부) ;
  • 이정현 (전남대학교 식물생명공학과) ;
  • 강종구 (순천대학교 원예학과) ;
  • 배종향 (원광대학교 원예.애완동물학부)
  • Received : 2011.01.04
  • Accepted : 2011.01.18
  • Published : 2011.03.31

Abstract

This research was carried out to investigate relationship between underground part environment control and growth or yield of sweet pepper in greenhouse as affected by covering materials. Daily amount of applied nutrient solution for research period in the greenhouse of plasticfilm house was more 1.6 times than that in glass house. But daily absorptance rate of nutrient solution and specific electrical conductance of rockwool between two greenhouses were not different in the range of 71.3-73.3% and $4.17{\sim}4.23dS{\cdot}m^{-1}$ respectively. Leaf area of sweet pepper, in leaf growth characteristics in two greenhouses, were $123.0cm^2$/leaf (in glass house) and $119.5cm^2$/leaf (in plasticfilm house), but the another (fresh and dry weight, dry matter) were not different. But weekly yield per square meter in glass house was more 1.3 times than that in plasticfilm house as $850g{\cdot}m^{-2}$ and $650g{\cdot}m^{-2}$, respectively. Effect of slab EC and absorptance rate of nutrient solution on leaf growth characteristics and yield between two greenhouses were not different. The results show when sweet pepper is cultured in greenhouse as affected by covering materials and above ground part environment, the plant growth and yield are little affected by underground part environment.

본 연구는 피복재 종류에 따른 착색단고추의 생육 및 생산성에 대한 지하부 환경 요인의 영향 정도를 알아보았다. 조사 기간 동안 배양액 공급량은 플라스틱 필름온실에서는 $5,404L{\cdot}m^{-2}$로 유리온실의 $3,483L{\cdot}m^{-2}$보다 1.6배나 많았다. 그러나 배양액 흡수율은 두 온실에서 71.3~73.3%로 유사한 수준이었다. 배지 EC도 $4.17{\sim}4.23dS{\cdot}m^{-1}$ 수준으로 큰 차이를 나타내지 않았다. 정단부에서 아래로 6번째 잎의 면적은 유리온실에서 평균 $123.0cm^2$/1eaf로 플라스틱필름온실의 $119.5cm^2$/1eaf보다 다소 넓었다. 그러나 잎의 생체중, 건물중 및 건물률은 두 온실 간 뚜렷한 차이를 나타내지 않았다. 주간 생산량은 유리온실에서 $850g{\cdot}m^{-2}$로 플라스틱필름온실의 $650g{\cdot}m^{-2}$보다 1.3배정도로 많았다. 하지만 조사 기간 동안 잎의 면적 및 건물률, 그리고 생산량 모두에 대한 배지 EC와 배양액 흡수율 차이에서 오는 영향은 두 온실 간 뚜렷한 차이를 나타내지 않았다. 따라서 피복재 및 지상부 환경이 다른 온실에서 착색단고추 수경재배 시 생육 및 생산성 차이에 대한 지하부 요인의 영향은 거의 없는 것으로 판단된다.

Keywords

References

  1. Abdel-Mawgoud, A.M.R., Y.N. Sassine, M. Bohme, A.F. Abou-Hadid, and S.O. Ei-Abd. 2005. Sweet pepper biomass production and partitioning as affected by different shoot and root-zone conditions. Intl. J. Bot. 1(2):151-157. https://doi.org/10.3923/ijb.2005.151.157
  2. Akira. I., M. Masui, A. Nakaya, and H. Shigeoka. 1981. Effect of concentration of nutrient solution on the growth and keeping quality of chrysanthemums. J. Jpn. Soc. Hort. Sci. 50:86-91. https://doi.org/10.2503/jjshs.50.86
  3. Chi, S.H., K.B. Ann, S.W Park, and J.I. Chang. 1998. Effect of ionic strength of nutrient solution on the growth and fruit yield in hydroponically strawberry plants. J. Kor. Soc. Hort. Sci. 39:166-169.
  4. Chung, S.J., J.Y. Cho, B.S. Lee, and B.S. Seo. 1994. Effect of ionic strength of nutrient solution on the growth and yield of cucumber plant grown by Deep Flow Technique (DFT). J. Kor. Soc. Hort. Sci. 35:289-293.
  5. Heuvilink, E. and H. Challa. 1989. Dynamic optimization of artficial lighting in house. Acta Hort. 260:401-402.
  6. Heuvelink, E., L.F.M. Marcelis, and O. Korner. 2004. How to reduce yield fluctuations in sweet pepper. Acta. Hort. 633:349-355.
  7. Jeong, E.M, W.T. Kim, S.R. Kim, and S.H. Yun. 2008. The state and urgent problem of sweet pepper in Korea. Korea Rural Economy Institute, Seoul, Korea (in Korean).
  8. Jeong, W.J., J.H. Lee, H.C. Kim, and J.H. Bae. 2009. Dry matter production, distribution and yield of sweet pepper grown under glasshouse and plastic greenhouse in Korea. J. Bio-Environ. Control 18:258-265.
  9. Kang, J.G, B.S. Seo, and S.J. Chung. 1995. Effect of nutrient concentration on growth and development of aeroponically grown chrysanthemum. J. Kor. Soc. Hort. Sci. 36:83-89.
  10. Korea Agricultural Trade Information (KATI). 2009. The state of sweet pepper industry in Korea. Kor. Agro-Fisheries Trade Corporation, Seoul, Korea.
  11. Kwon, Y.S. and H. Chun. 1999. Production of chili pepper in different kinds of greenhouse in Korea. The Asian and Pacific Resion-Food and Fert. Techno. Ctr. Ext.-Bul. No. 478.
  12. Marcelis, L.F.M., E. Heuvelink, L.R. Baan Hofman-Eijer, J. Den Bakker, and L.B. Xue. 2004. Flower and fruit abortion in sweet pepper in relation to source and sink strength. J. Expt. Bot. 55: 2261-2268. https://doi.org/10.1093/jxb/erh245
  13. Myoung, D.J. 2007. Correlation between climatic factors and yield of sweet pepper (Capsicum annuum L.) in glasshouse. Ms.C Thesis. Chonnam Natl. Univ., Dept. Hort. Plant Bio-Technol (in Korean).
  14. Tadesse, T. and M.A. Nichols. 2003. The Effect of conductivity on the yield and quality of sweet pepper (Capsicum annuum L.). Acta Hort. 609: 197-199.
  15. van Hoorna, J. W., N. Katerjib, A. Hamdyc, and M. Mastrorillid. 1993. Effect of saline water on soil salinity and on water stress, growth, and yield of wheat and potatoes. Agr. Water Mgt. 23:247-265. https://doi.org/10.1016/0378-3774(93)90032-6