DOI QR코드

DOI QR Code

Sodium butyrate와 sodium pyruvate 첨가에 의한 hCTLA4Ig 생산성 증대

Enhanced Production of hCTLA4Ig by Adding Sodium Butyrate and Sodium Pyruvate

  • 유미희 (인하대학교 공과대학 생물공학과) ;
  • 김수진 (인하대학교 공과대학 생물공학과) ;
  • 권준영 (인하대학교 공과대학 생물공학과) ;
  • 남형진 (인하대학교 공과대학 생물공학과) ;
  • 김동일 (인하대학교 공과대학 생물공학과)
  • Yoo, Mi-Hee (Department of Biological Engineering, Inha University) ;
  • Kim, Soo-Jin (Department of Biological Engineering, Inha University) ;
  • Kwon, Jun-Young (Department of Biological Engineering, Inha University) ;
  • Nam, Hyung-Jin (Department of Biological Engineering, Inha University) ;
  • Kim, Dong-Il (Department of Biological Engineering, Inha University)
  • 투고 : 2011.09.21
  • 심사 : 2011.10.14
  • 발행 : 2011.10.31

초록

Human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig), an immunosuppressive agent, was expressed in transgenic rice cells using RAmy3D promoter and RAmy1A signal peptide for the inducible production and secretion into culture media by sugar depletion. In this study, sodium butyrate was used as a small molecular enhancer (SME) to enhance the production of hCTLA4Ig in transgenic rice cell suspension cultures. When 1 mM sodium butyrate was added in sugar-free media, relative viability was not reduced, while the productivity was improved 1.3-fold. In addition, by supplementing 87 mM sodium pyruvate as an alternative energy source during the production phase, death rate of the cells was decreased. When sodium pyruvate was not added, most cells became dead at day 6. However, by adding sodium pyruvate, 18% of viability can be maintained until day 10 and the production of hCTLA4Ig was enhanced 1.4-fold. When the combination of sodium pyruvate and sodium butyrate at optimum concentrations was added, the highest viability and hCTLA4Ig production could be obtained. The highest level of hCTLA4Ig reached up to 35 mg/L at day 10.

키워드

참고문헌

  1. Strohl, W. R. and D. M. Knight (2009) Discovery and development of biopharmaceuticals. Curr. Opin. Biotechnol. 20: 668-672. https://doi.org/10.1016/j.copbio.2009.10.012
  2. Gomord, V., P. Chamberlain, R. Jefferis, and L. Faye (2005) Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol. 23: 559-565. https://doi.org/10.1016/j.tibtech.2005.09.003
  3. Doran, P. M. (2006) Foreign protein degradation and instability in plants and plant tissue cultures. Trends Biotechnol. 24: 426-432. https://doi.org/10.1016/j.tibtech.2006.06.012
  4. Lui, V. C. H., P. K. H. Tam, M. Y. K. Leung, J. Y. B. Lau, J. K. Y. Chan, V. S. F. Chan, M. Dallman, and K. S. E. Cheah (2003) Mammary gland-specific secretion of biologically active immunosuppressive agent cytotoxic-T-lymphocyte antigen 4 human immunoglobulin fusion protein (CTLA4Ig) in milk by transgenesis. J. Immunol. Methods 277: 171-183. https://doi.org/10.1016/S0022-1759(03)00071-1
  5. Hellwig, S., J. Drossard, R. M. Twyman, and R. Fischer (2004) Plant cell cultures for the production of recombinant proteins. Nat. Biotechnol. 22: 1415-1422. https://doi.org/10.1038/nbt1027
  6. Jones, D., N. Kroos, R. Anema, B. van Montfort, A. Vooys, S. Kraats, E. Helm, S. Smits, J. Schouten, and K. Brouwer (2003) High-level expression of recombinant IgG in the human cell line PER.C6. Biotechnol. Prog. 19: 163-168. https://doi.org/10.1021/bp025574h
  7. Yoon, S. K., J. Y. Song, and G. M. Lee (2003) Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol. Bioeng. 82: 289-298. https://doi.org/10.1002/bit.10566
  8. Allen, M. J., J. P. Boyce, M. T. Trentalange, D. L. Treiber, B. Rasmussen, B. Tillotson, R. Davis, and P. Reddy (2008) Identification of novel small molecule enhancers of protein production by cultured mammalian cells. Biotechnol. Bioeng. 100: 1193-1204. https://doi.org/10.1002/bit.21839
  9. Palermo, D., M. DeGraaf, K. Marotti, E. Rehberg, and L. Post (1991) Production of analytical quantities of recombinant proteins in Chinese hamster ovary cells using sodium butyrate to elevate gene expression. J. Biotechnol. 19: 35-47. https://doi.org/10.1016/0168-1656(91)90073-5
  10. Paterson, T., J. Innes, and S. Moore (1994) Approaches to maximizing stable expression of $\alpha$1-antitrypsin in transformed CHO cells. Appl. Microbiol. Biotechnol. 40: 691-698. https://doi.org/10.1007/BF00173331
  11. Wang, M. (2002) Erythropoietin production from CHO cells grown by continuous culture in a fluidized-bed bioreactor. Biotechnol. Bioeng. 77: 194-203. https://doi.org/10.1002/bit.10144
  12. Kim, J. S., B. C. Ahn, B. P. Lim, Y. D. Choi, and E. C. Jo (2004) High-level scu-PA production by butyrate-treated serum-free culture of recombinant CHO cell line. Biotechnol. Prog. 20: 1788-1796. https://doi.org/10.1021/bp025536y
  13. Mimura, Y., J. Lund, S. Church, S. Dong, J. Li, M. Goodall, and R. Jefferis (2001) Butyrate increases production of human chimeric IgG in CHO-K1 cells whilst maintaining function and glycoform profile. J. Immunol. Methods 247: 205-216. https://doi.org/10.1016/S0022-1759(00)00308-2
  14. Jeon, M. K. and G. M. Lee (2007) Correlation between enhancing effect of sodium butyrate on specific productivity and mRNA transcription level in recombinant Chinese hamster ovary cells producing antibody. J. Microbiol. Biotechnol. 17: 1036-1040.
  15. Thompson, J., R. Abdullah, and E. Cocking (1986) Protoplast culture of rice (Oryza sativa L.) using media solidified with agarose. Plant Science 47: 123-133. https://doi.org/10.1016/0168-9452(86)90059-2
  16. Chang, W. C., M. H. Chen, and T. M. Lee (1999) 2,3,5- Triphenyltetrazolium reduction in the viability assay of Ulva fasciata (Chlorophyta) in response to salinity stress. Bot. Bull. Acad. Sin. 40: 207-212.
  17. Battaglino, R., M. Huergo, A. Pilosof, and G. Bartholomai (1991) Culture requirements for the production of protease by Aspergillus oryzae in solid state fermentation. Appl. Microbiol. Biotechnol. 35: 292-296.
  18. Rodriguez, J., M. Spearman, N. Huzel, and M. Butler (2005) Enhanced production of monomeric interferon-$\beta$ by CHO cells through the control of culture conditions. Biotechnol. Prog. 21: 22-30.
  19. Chen, Z., K. Iding, D. Lütkemeyer, and J. Lehmann (2000) A low-cost chemically defined protein free medium for a recombinant CHO cell line producing prothrombin. Biotechnol. Lett. 22: 837-841. https://doi.org/10.1023/A:1005665530028