Application Potential of Hurdle Technology by Combination of Bacteriocin Produced by Lactobacillus brevis DK25 and Potassium Benzoate

Lactobacillus brevis DK25의 박테리오신과 안식향산칼륨과의 혼용에 의한 Hurdle Technology 적용 가능성

  • Lim, Sung-Mee (Department of Food Science & Technology, Tongmyong University)
  • 임성미 (동명대학교 식품공학과)
  • Received : 2011.10.31
  • Accepted : 2011.11.30
  • Published : 2011.12.31

Abstract

Lactobacillus brevis DK25 isolated from Dongchimi was identified by physiological and biochemical tests and 16S rDNA sequence analysis. Bacteriocin of L. brevis DK25 exhibits inhibitory activity against Enterococcus faecalis and Listeria monocytogenes when using agar well diffusion method. Maximal production of bacteriocin was reached in the beginning of the stationary phase, and inhibitory activity declined after the late stationary phase. This result suggested that bacteriocin was produced in a growth-associated manner. Complete inactivation of bacteriocin activity was observed after treatment with protease, but the activity was stable between pH 4-9 and heat resistant (30 min at $100^{\circ}C$). Bacteriocin showed a concentration-dependent antimicrobial activity against L. monocytogenes KCTC 3569. Moreover, the application experiment showed that combination of bacteriocin (320 AU/ml) with potassium benzoate (0.05%) could significantly reduce the counts of L. monocytogenes KCTC 3569 in mayonnaise during storage at 4 or $25^{\circ}C$ for 10 days. Thus, bacteriocin from L. brevis DK25 may be used for hurdle technology by combination with potassium benzoate in order to increase pathogenic bacteria inactivation in food processing and food safety control.

동치미에서 분리된 Lactobacillus brevis DK25 균주는 생화학적 특성, 당 분해능 및 16S rDNA 염기서열 분석을 통해 동정하였다. L. brevis DK25가 생산한 박테리오신의 항균활성은 Enterococcus faecalis와 Listeria monocytogenes에 대해서만 나타나 항균 스펙트럼은 비교적 좁은 것으로 확인되었다. 배양과정 동안 L. brevis DK25의 박테리오신은 정지기 초기에 최대의 활성(1,280 AU/ml)을 나타내었으나, 그 이후에는 급격하게 감소되었으므로 박테리오신은 생산균이 증식하는 과정 동안 생성됨을 알 수 있었다. 박테리오신의 활성은 protease 처리에 의해 완전히 소실되었으나 pH 4-9의 범위에서는 활성에 변함이 없었고, $100^{\circ}C$에서 30분간 가열처리에도 활성을 유지하였으므로 열에 비교적 안정하였다. 박테리오신의 L. monocytogenes KCTC 3569에 대한 항균활성은 농도의존적으로 나타났고 특히, $4^{\circ}C$$25^{\circ}C$에 저장하는 동안 마요네즈 내에 존재하는 L. monocytogenes KCTC 3569의 증식을 억제하기 위해선 박테리오신과 안식향산칼륨 용액을 단독으로 처리하는 것보다는 이들을 혼합하여 처리했을 때 유의적으로 더 높은 항균 효과를 얻을 수 있었다. 따라서 L. brevis DK25가 생산한 박테리오신은 안식향산칼륨과 함께 식품의 제조 공정 중 식중독균 제어를 위해서 hurdle technology에 적용될 수 있다고 판단된다.

Keywords

References

  1. Ananou, S., A. Banos, M. Maqueda, M. Martinez-Bueno, A. Galvez, and E. Valdivia. 2010. Effect of combined physicchemical treatments based on enterocin AS-48 on the control of Listeria monocytogenes and Staphylococcus aureus in a model cooked ham. Food Control 21, 478-486. https://doi.org/10.1016/j.foodcont.2009.07.010
  2. Avery, S.M. and S. Buncic. 1997. Antilisterial effects of a sorbate-nisin combination in vitro and on packaged beef at refrigeration temperature. J. Food Protect. 60, 1075-1080. https://doi.org/10.4315/0362-028X-60.9.1075
  3. Batish, V.K., S. Grover, and R. Lal. 1989. Screening lactic starter cultures for antifungal activity. Cult. Dairy Prod. J. 24, 21-25.
  4. Branen, J.K. and P.M. Davidson. 2004. Enhancement of nisin, lysozyme, and monolaurin antimicriobial activities by ethylenediaminetetracetic acid and lactoferrin. Int. J. Food Microbiol. 90, 63-74. https://doi.org/10.1016/S0168-1605(03)00172-7
  5. Bryan, F.L. 2002. Where we are in retail food safety, how we got to where we are, and how do we get there? J. Environ. Health 65, 29-36.
  6. Buncic, S., S. Fitzgerald, C.M. Bell, and R.G. Hudson. 1995. Individual and combined listericidal effects of sodium lactate, potassium sorbate, nisin and curing salts at refrigeration temperatures. J. Food Safety 15, 247-264. https://doi.org/10.1111/j.1745-4565.1995.tb00137.x
  7. Calderon-Miranda, M.L., G.V. Barbosa-Canovas, and B.G. Swanson. 1999. Inactivation of Listeria innocua in liquid whole egg by pulsed electric fields and nisin. Int. J. Food Microbiol. 51, 7-17. https://doi.org/10.1016/S0168-1605(99)00070-7
  8. Condon, S. 1987. Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 46, 269-280. https://doi.org/10.1111/j.1574-6968.1987.tb02465.x
  9. Daly, C., W.E. Sandine, and P.R. Elliker. 1970. Interactions of food starter cultures and food-borne pathogens: Streptococcus diacetylactis versus food pathogens. J. Milk Food Technol. 35, 349-357.
  10. Garcia, M.T., M.M. Canamero, R. Lucas, N.B. Omar, R.P. Pulido, and A. Galvez. 2004. Inhibition of Listeria monocytogenes by enterocin EJ97 produced by Enterococcus faecalis EJ97. Int. J. Food Microbiol. 90, 161-170. https://doi.org/10.1016/S0168-1605(03)00051-5
  11. Galvez, A., H. Abriuel, R.L. Lopez, and N.B. Omar. 2007. Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 120, 51-70. https://doi.org/10.1016/j.ijfoodmicro.2007.06.001
  12. Galvez, A., H. Abriouel, N. Benomar, and R. Lucas. 2010. Microbiol antagonistic to food-borne pathogens and biocontrol. Curr. Opin. Biotechnol. 21, 142-148. https://doi.org/10.1016/j.copbio.2010.01.005
  13. Gandhi, M. and M.L. Chikindas. 2007. Listeria: A foodborne pathogen that knows how to survive. Int. J. Food Microbiol. 113, 1-15. https://doi.org/10.1016/j.ijfoodmicro.2006.07.008
  14. Ha, D.M., D.S. Cha, and S.G. Han. 1994. Identification of bacteriocin-producing lactic acid bacteria from Kimchi and partial characterization of their bacteriocin. J. Microbiol. Biotechnol. 4, 305-315.
  15. Jack, R.W., J.R. Tagg, and B. Ray. 1995. Bacteriocin of gram-positive bacteria. Microbiol. Rev. 59, 171-200.
  16. Jung, D.S., F.W. Bodyfelt, and M.A. Daeschel. 1992. Influence of fat and emulsifiers on the efficacy of nisin in inhibiting Listeria monocytogenes in fluid milk. J. Dairy Sci. 75, 387-393. https://doi.org/10.3168/jds.S0022-0302(92)77773-X
  17. Jung, M.Y. and H.D. Paik. 2000. Identification and partial characterization of lacticin JW3, a bacteriocin produced by Lactococcus lactis JW3 isolated from commercial Swiss cheese products. Food Sci. Biotechnol. 9, 116-123.
  18. Kang, T.K. and W.J. Kim. 2010. Characterization of an amylase-sensitive bacteriocin DF01 produced by Lactobacillus brevis DF01 isolated from Donchimi, Korean fermented vegetable. Kor. J. Food Sci. Ani. Resour. 30, 795-803. https://doi.org/10.5851/kosfa.2010.30.5.795
  19. Koh, S.K., J.E. Lee, H.W. Kim, S.S. Kim, Y.K. Park, Y.H. Park, and K.H. Koh. 2004. Identification and deacidification of lactic acid bacteria in Korean red wine. Food Sci. Biotechnol. 13, 96-99.
  20. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  21. Mante, E.S., E. Sakyi-Dawson, and W.K. Amoa-Awua. 2003. Antimicrobial interactions of microbial species involved in the fermentation of cassava dough into agbelima with particular reference to the inhibitory effect of lactic acid bacteria on enteric pathogens. Int. J. Food Microbiol. 89, 41-50. https://doi.org/10.1016/S0168-1605(03)00103-X
  22. Mauch, A., F. Dal Bello, A. Coffey, and E.K. Arendt. 2010. The use of Lactobacillus brevis PS1 to in vitro inhibits the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. Int. J. Food Microbiol. 141, 116-121. https://doi.org/10.1016/j.ijfoodmicro.2010.05.002
  23. Modi, K.D., M.L. Chikindas, and T.L. Montville. 2000. Sensitivity of nisin-resistant Listeria monocytogenes to heat and the synergistic action of heat and nisin. Lett. Appl. Microbiol. 30, 249-253. https://doi.org/10.1046/j.1472-765x.2000.00708.x
  24. Mundt, J.O. 1986. Bergey's Manual of Systematic Bacteriology, pp. 577-592. In P.H.A. Sneath, N.S. Mair, M.E. Sharpe, and J.G. Holt (ed.), Williams & Wilkins, Baltimore, MD, USA.
  25. Neetoo, H., M. Ye, and H. Chen. 2008. Potential antimicrobials to control Listeria monocytogenes in vacuum-packaged cold-smoked salmon pate and fillets. Int. J. Food Microbiol. 123, 200-227.
  26. Nielsen, J.W., J.S. Dickson, and J.D. Crouse. 1990. Use of a bacteriocin produced by Pediococcus acidilactici to inhibit Listeria monocytogenes associated with fresh meat. Appl. Environ. Microbiol. 56, 2142-2145.
  27. Nilsson, L., Y. Chen, M.L. Chikindas, H.H. Huss, L. Gram, and T.J. Montville. 2000. Carbon dioxide and nisin act synergistically on Listeria monocytogenes. Appl. Environ. Microbiol. 66, 769-774. https://doi.org/10.1128/AEM.66.2.769-774.2000
  28. Ooi, S.T. and B. Lorber. 2005. Gastroenteritis due to Listeria monocytogenes. Clin. Pract. 40, 1327-1332.
  29. O'Sullivan, L., R.P. Ross, and C. Hill. 2002. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84, 593-604. https://doi.org/10.1016/S0300-9084(02)01457-8
  30. Otero, M.C. and M.E. Nader-Macias. 2006. Inhibition of Staphylococcus aureus by $H_2O_2$-producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Anim. Reprod. Sci. 96, 35-46. https://doi.org/10.1016/j.anireprosci.2005.11.004
  31. Parente, E., C. Brienza, M. Moles, and A. Ricciardi. 1995. A comparison of methods for the measurement of bacteriocin activity. J. Microbiol. Methods 22, 95-108. https://doi.org/10.1016/0167-7012(94)00068-I
  32. Park, H.J., N.K. Lee, J.O. Choi, J.U. Ha, and H.D. Paik. 2001. Control of Listeria monocytogenes in ground beef by lactococcal bacteriocins. Food Sci. Biotechnol. 10, 199-203.
  33. Rocourt, J. 1996. Risk factors for listeriosis. Food Control 7, 195-202. https://doi.org/10.1016/S0956-7135(96)00035-7
  34. Ronka, E., E. Malinen, M. Saarela, M. Rinta-Koski, J. Aarnikunnas, and A. Palva. 2003. Probiotic and milk technological properties of Lactobacillus brevis. Int. J. Food Microbiol. 83, 63-74. https://doi.org/10.1016/S0168-1605(02)00315-X
  35. Sahl, H.G. 1991. Pore-formation in bacterial membrances by cationic lantiobiotics, pp. 347-358. In G. Jung and H.G. Sahl (eds.), Nisin and novel lantibiotics. Escom Publishers, Leiden, The Netherlands.
  36. Schnurer, J. and J. Magnusson. 2005. Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci. Technol. 16, 70-78. https://doi.org/10.1016/j.tifs.2004.02.014
  37. Thomas, L.V., M.R. Clarkson, and J. Delves-Broughton. 2000. Nisin, pp. 463-524. In A.S. Naidu (ed.), Natural food antimicrobial systema. CRC Press, Boca-Raton, FL, USA.
  38. Unicomb, L., P. Bird, and C. Dalton. 2003. Outbreak of Salmonella potsdam associated with salad dressing at a restaurant. Commun. Dis. Intell. 27, 508-512.
  39. Wing, E.J. and S.H. Gregory. 2002. Listeria monocytogenes: Clinical and experimental update. J. Infect. Dis. 185, S18-S24. https://doi.org/10.1086/338465
  40. Yakabe, T., E.L. Moore, S. Yokota, H. Sui, Y. Nobuta, M. Fukao, H. Palmer, and N. Yajima. 2009. Safety assessment of Lactobacillus brevis KB290 as a probiotic strain. Food Chem. Toxicol. 47, 2450-2453. https://doi.org/10.1016/j.fct.2009.07.001
  41. Zapico, P., M. Medina, P. Gaya, and M. Nunez. 1998. Synergistic effect of nisin and the lactoperoxidase system on Listeria monocytogenes in skim milk. Int. J. Food Microbiol. 40, 35-42. https://doi.org/10.1016/S0168-1605(98)00008-7