Saccharomyces cerevisiae의 균사형 생장에서 이중 특이성 인산화 효소, ScKns1p의 기능 분석

Function of Dual Specificity Kinase, ScKns1, in Adhesive and Filamentous Growth of Saccharomyces cerevisiae

  • 박윤희 (충남대학교 생명시스템과학대학 미생물.분자생명과학과) ;
  • 양지민 (충남대학교 생명시스템과학대학 미생물.분자생명과학과) ;
  • 양소영 (충남대학교 생명시스템과학대학 미생물.분자생명과학과) ;
  • 김상미 (충남대학교 생명시스템과학대학 미생물.분자생명과학과) ;
  • 조영미 (충남대학교 생명시스템과학대학 미생물.분자생명과학과) ;
  • 박희문 (충남대학교 생명시스템과학대학 미생물.분자생명과학과)
  • Park, Yun-Hee (Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Yang, Ji-Min (Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Yang, So-Young (Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Kim, Sang-Mi (Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Cho, Young-Mi (Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Park, Hee-Moon (Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University)
  • 투고 : 2011.06.09
  • 심사 : 2011.06.21
  • 발행 : 2011.06.30

초록

ScKns1는 Saccharomyces cerevisiae에서 발견되는 이중 특이성 인산화 효소이다. S288c 계열에서 $Sckns1{\Delta}$ 균주는 야생형과 차이를 보이지 않아, ScKns1의 세포 내 기능에 대해 밝혀지지 않았다. 그러나 분열 효모에서 LAMMER kinase는 세포 엉김과 균사형 생장 및 산화 스트레스와 관련된 것으로 밝혀졌다. 따라서 형태학적 변화를 관찰할 수 있는 S. cerevisiae ${\Sigma}1278b$ 균주에서 ScKNS1 결손균주($Sckns1{\Delta}$)를 제조하고 표현형 변화를 통하여 기능을 분석하였다. $Sckns1{\Delta}$ 균주는 균사형 생장을 유도하는 질소고갈 조건과 butanol 첨가 조건에서 균사형 생장의 결함을 보였으며, agar 표면의 부착생장도 감소하였다. 또한 $Sckns1{\Delta}$ 균주에 균사형 생장을 조절하는 MAPK 경로 유전자를 도입한 결과 RAS2와 STE20에 의해서는 균사형 생장 결함이 회복되지 않았으나, STE11, STE12와 TEC1에 의해서 결합이 회복되었다. 이러한 결과들은 S. cerevisiae에서도 LAMMER kinase가 MAPK 경로를 통하여 균사형 생장을 조절함을 시사한다.

In the previous study with the Saccharomyces cerevisiae S288c strains, no known function of the dual specificity kinase, ScKns1, was reported because its gene deletion did not show any noticeable phenotypic changes. Recent study with fission yeast, however, revealed the involvement of the LAMMER kinase in flocculation, filamentous growth, oxidative stress, and so on. Therefore we made Sckns1-deletion mutants with the ${\Sigma}1278b$-background, with which one can induce filamentous and adhesive growth in contrast to those of the S288c-background. The $Sckns1{\Delta}$ strains of both haploid and diploid showed defect in filamentous growth under conditions for inducing the filamentous growth such as nitrogen starvation and butanol treatment. Both kinds of the deletion mutants also showed decrease in adhesive growth on agar surface. Interestingly enough the defects of the $Sckns1{\Delta}$ strains were suppressed by the over-expression of each gene for the components of the MAPK signaling pathway such as STE11, STE12, and TEC1, respectively, but not by the upstream components, RAS2 and STE20, respectively. Although further investigations are required, these results indicate that the ScKns1 may act in place between the Ste20 and the Ste11 of the S. cerevisiae MAPK cascade.

키워드

참고문헌

  1. Abdullah, U. and P.J. Cullen. 2009. The tRNA modification complex elongator regulates the Cdc42-dependent mitogen-activated protein kinase pathway that controls filamentous growth in yeast. Eukaryot. Cell 8, 1362-1372. https://doi.org/10.1128/EC.00015-09
  2. Cohen, P. 2000. The regulation of protein function by multisite phosphorylation-a 25 year update. Trends Biochem. Sci. 25, 596-601. https://doi.org/10.1016/S0968-0004(00)01712-6
  3. Cullen, P.J. and G.F. Sprague, Jr. 2000. Glucose depletion causes haploid invasive growth in yeast. Proc. Natl. Acad. Sci. USA 97, 13619-13624. https://doi.org/10.1073/pnas.240345197
  4. Dickinson, J.R. 2008. Filament formation in Saccharomyces cerevisiae-a review. Folia Microbiol. (Praha) 53, 3-14. https://doi.org/10.1007/s12223-008-0001-6
  5. Fichtner, L., F. Schulze, and G.H. Braus. 2007. Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c. Mol. Microbiol. 66, 1276-1289. https://doi.org/10.1111/j.1365-2958.2007.06014.x
  6. Gietz, D., A. St. Jean, R.A. Woods, and R.H. Schiestl. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425. https://doi.org/10.1093/nar/20.6.1425
  7. Gimeno, C.J., P.O. Ljungdahl, C.A. Styles, and G.R. Fink. 1992. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077-1090. https://doi.org/10.1016/0092-8674(92)90079-R
  8. Higashiyama, S., H. Iwabuki, C. Morimoto, M. Hieda, H. Inoue, and N. Matsushita. 2008. Membrane-anchored growth factors, the epidermal growth factor family: beyond receptor ligands. Cancer Sci. 99, 214-220. https://doi.org/10.1111/j.1349-7006.2007.00676.x
  9. Kang, W.H., Y.D. Park, J.S. Hwang, and H.M. Park. 2007. RNA-binding protein Csx1 is phosphorylated by LAMMER kinase, Lkh1, in response to oxidative stress in Schizosaccharomyces pombe. FEBS Lett. 581, 3473-3478. https://doi.org/10.1016/j.febslet.2007.06.053
  10. Kang, W.H., Y.H. Park, and H.M. Park. 2010. The LAMMER kinase homolog, Lkh1, regulates Tup transcriptional repressors through phosphorylation in Schizosaccharomyces pombe. J. Biol. Chem. 285, 13797-13806. https://doi.org/10.1074/jbc.M110.113555
  11. Kim, K.H., Y.M. Cho, W.H. Kang, J.H. Kim, K.H. Byun, Y.D. Park, K.S. Bae, and H.M. Park. 2001. Negative regulation of filamentous growth and flocculation by Lkh1, a fission yeast LAMMER kinase homolog. Biochem. Biophys. Res. Commun. 289, 1237-1242. https://doi.org/10.1006/bbrc.2001.6128
  12. Liu, H., C.A. Styles, and G.R. Fink. 1993. Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262, 1741-1744. https://doi.org/10.1126/science.8259520
  13. Liu, H., C.A. Styles, and G.R. Fink. 1996. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144, 967-978.
  14. Lorenz, M.C., N.S. Cutler, and J. Heitman. 2000. Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol. Biol. Cell. 11, 183-199. https://doi.org/10.1091/mbc.11.1.183
  15. Martinez-Anaya, C., J.R. Dickinson, and P.E. Sudbery. 2003. In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results from the operation of the morphogenesis checkpoint. J. Cell. Sci. 116, 3423-3431. https://doi.org/10.1242/jcs.00634
  16. Moll, T., G. Tebb, U. Surana, H. Robitsch, and K. Nasmyth. 1991. The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell 66, 743-758. https://doi.org/10.1016/0092-8674(91)90118-I
  17. Mosch, H.U., E. Kubler, S. Krappmann, G.R. Fink, and G.H. Braus. 1999. Crosstalk between the Ras2p-controlled mitogenactivated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol. Biol. Cell. 10, 1325-1335. https://doi.org/10.1091/mbc.10.5.1325
  18. Padmanabha, R., S. Gehrung, and M. Snyder. 1991. The KNS1 gene of Saccharomyces cerevisiae encodes a nonessential protein kinase homologue that is distantly related to members of the CDC28/cdc2 gene family. Mol. Gen. Genet. 229, 1-9.
  19. Pan, X. and J. Heitman. 1999. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 4874-4887. https://doi.org/10.1128/MCB.19.7.4874
  20. Park, Y.D., W.H. Kang, W.S. Yang, K.S. Shin, K.S. Bae, and H.M. Park. 2003. LAMMER kinase homolog, Lkh1, is involved in oxidative-stress response of fission yeast. Biochem. Biophys. Res. Commun. 311, 1078-1083. https://doi.org/10.1016/j.bbrc.2003.10.110
  21. Park, Y.H. and H.M. Park. 2011. Disruption of the dual specificity kinase gene causes the reduction of virulence in Candida albicans. Kor. J. Mycol. 39, 85-87. https://doi.org/10.4489/KJM.2011.39.1.085
  22. Park, Y.H. and H.M. Park. 2011. Temperature sensitivity of sigma background is suppressed by the disruption of ScKNS1 in Saccharomyces cerevisiae. Kor. J. Microbiol. 47, In press.