Development of the Gene Therapy Vector for Targeting Ovarian Cancer Cells through ErbB Receptors

ErbB 수용체를 이용한 난소암세포 표적 유전자치료 벡터의 개발

  • Joung, In-Sil (Department of Biological Sciences, Hanseo University) ;
  • Bang, Seong-Ho (Department of Biological Sciences, Hanseo University)
  • Received : 2011.03.11
  • Accepted : 2011.03.16
  • Published : 2011.03.31

Abstract

Inefficiency of in vivo gene transfer using currently available vectors reflects a major hurdle in cancer gene therapy. Both viral and non-viral approaches have been described to improve gene transfer efficiency but suffer from a number of limitations. Here we tested an adenovirus carrying the small peptide ligand derived from heregulin${\beta}$ EGF-like domain onto fiber, the adenoviral capsid protein, to deliver transgene to ovarian cancer cells which overexpress ErbB, the cognate receptors for heregulin. The attachement of 53 amino acids to fiber didn't affect on the fiber's trimer structure that is critical for the viral entry to cells. The fiber-modified adenovirus can mediate entry and expression of a ${\beta}$-galactosidase into cancer cells in an increased efficiency compared the unmodified adenovirus. Particularly, the gene transfer efficiency was improved up to 5 times in OVCAR3 cells, an ovarian cancer cell line. Such transduction systems hold promise for delivering genes to ErbB receptor overexpressing cancer cells, and could be used for future cancer gene therapy.

암의 유전자치료에서 암세포로의 선택적 유전자전달 매체의 부족은 치료효과의 감소를 야기하는 문제이다. 본 연구에서는 난소암 유전자치료의 효율을 높이기 위한 목적으로 난소암세포로 선택적인 유전자전달을 하도록 개량된 아데노바이러스 벡터를 제조하고, 그 효율성을 난소암세포주를 이용하여 조사하였다. 난소암세포에 과다발현하는 분자인 ErbB receptor를 표적하도록 아데노바이러스 외피단백질 fiber에 ErbB receptor에 대한 ligand인 heregulin으로부터 유래한 펩티드를 부착하였다. 53개의 아미노산으로 구성된 외부 펩티드를 fiber에 부착하였을 때 바이러스 감염에 중요한 기능을 하는 fiber 삼량체 구조 형성에 영향을 미치지 않았다. Fiber를 조작한 개량 아데노바이러스는 야생형 fiber를 가진 1세대 아데노바이러스 벡터에 비해 선택적으로 난소암으로 유전자를 전달하는 비율이 증가하였다. 특히 항암제에 저항성을 가진 난소암세포주 OVCAR3에서 유전자전달 효율이 약 5배 증가되었다. 따라서 난소암의 유전자치료에서 개량된 아데노바이러스로 치료 유전자를 전달하면 치료의 효율성을 향상시킬 수 있을 것이다.

Keywords

References

  1. Alvarez, R.D., J. Gomez-Navarro, M. Wang, M.N. Barnes, T.V. Strong, R.B. Arani, W. Arafat, J.V. Hughes, G.P. Seigal, and D.T. Curiel. 2000. Adenoviral-mediated suicide gene therapy for ovarian cancer. Mol. Ther. 2, 524-530. https://doi.org/10.1006/mthe.2000.0194
  2. Bergelson, J.M., A. Krithivas, L. Celi, G. Droguett, M.S. Horwitz, T. Wickham, R.L. Crowell, and R.W. Finberg. 1998. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J. Virol. 72, 415-419.
  3. Birchmeier, C. and K.A. Nave. 2008. Neuregulin-1, a key axonal signal that drives Schwann cell grwoth and differentiation. Glia 56, 1491-1497. https://doi.org/10.1002/glia.20753
  4. Bubill, E.M. and Y. Yarden. 2007. The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr. Opin. Cell. Biol. 19, 124-134. https://doi.org/10.1016/j.ceb.2007.02.008
  5. Chen, W., R. Bardhan, M. Bartels, C. Perez-Torres, R. Pautler, N. Halas, and A. Joshi. 2010. A molecularly targeted theranostic probe for ovarian cancer. Mol. Cancer Ther. 9, 1028-1038. https://doi.org/10.1158/1535-7163.MCT-09-0829
  6. Dimova, I., B. Zaharieva, S. Raitcheva, R. Dimitrov, N. Doganov, and D. Toncheva. 2006. Tissue microarray analysis of EGFR and erbB2 copy number changes in ovarian tumors. Int. J. Gynecol. Cancer 16, 145-151. https://doi.org/10.1111/j.1525-1438.2006.00286.x
  7. Hong, J.S. and J.A. Engler. 1991. The amino terminus of the adenovirus fiber protein encodes the nuclear localization signal. Virol. 185, 758-767. https://doi.org/10.1016/0042-6822(91)90547-O
  8. $H{\phi}gdall$, E.V., L. Christensen, K.S. Kjaer, J. Blaakaer, J.E. Bock, E. Glud, B. $N{\phi}rgaard$-Pedersen, and C.K. $H{\phi}gdall$. 2003. Distribution of HER-2 overexpression in ovarian carcinoma tissue and its prognostic value in patients with ovarian carcinoma. Cancer Cell 98, 66-73. https://doi.org/10.1002/cncr.11476
  9. Hynes, N.E. and H. Lane. 2005. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer 5, 341-354. https://doi.org/10.1038/nrc1609
  10. Ingram, N., L.P. MacCormac, N.T. Oxley, P.A. Burns, and G.D. Hall. 2010. Role of cell surface molecules and autologous ascitic fluid in determining efficiency of adenoviral transduction of ovarian cancer cells. Cancer Gene Ther. 17, 684-693. https://doi.org/10.1038/cgt.2010.24
  11. Jemal, A., R. Siegel, J. Xu, and E. Ward. 2010. Cancer statistics, 2010. CA Cancer J. Clin. 60, 277-300. https://doi.org/10.3322/caac.20073
  12. Jones, J.T., R.W. Akita, and M.X. Sliwkowski. 1999. Binding specificities and affinities of egf domains for ErbB receptors. FEBS Lett. 447, 227-231. https://doi.org/10.1016/S0014-5793(99)00283-5
  13. Jones, J.T., M.D. Ballinger, P.I. Pisacane, J.A. Lofgren, V.D. Fitzpatrick, W.J. Fairbrother, J.A. Wells, and M.X. Sliwkowski. 1998. Binding interaction of the heregulin$\beta$ egf domain with ErbB3 and ErbB4 receptors assessed by alanine scanning mutagenesis. J. Biol. Chem. 273, 11667-11674. https://doi.org/10.1074/jbc.273.19.11667
  14. Joung, I., G. Harber, K.M. Gerecke, S.L. Carroll, J.F. Collawn, and J.A. Engler. 2005. Improved gene delivery into neuroglial cells using a fiber-modified adenovirus vector. Biochem. Biophy. Res. Commun. 328, 1182-1187. https://doi.org/10.1016/j.bbrc.2005.01.080
  15. Joung, I., H.S. Kim, J.S. Hong, H. Kwon, and Y.K. Kwon. 2000. Effective gene transfer into regeneration sciatic nerves by adenoviral vector: Potentials for gene therapy of peripheral nerve injury. Mol. Cells 10, 540-545. https://doi.org/10.1007/s10059-000-0540-4
  16. Kim, J., E.S. Hwang, J.S. Kim, E. You, S.H. Lee, and J. Lee. 1999. Intraperitoneal gene therapy with adenoviral-mediated p53 tumor suppressor gene for ovarian cancer model in nude mouse FREE. Cancer Gene Ther. 6, 172-178. https://doi.org/10.1038/sj.cgt.7700006
  17. Korean Cancer database center. 2007. Death rate cause by cancers among Korean. Cancer Statistics.
  18. Lee, B.C., K. Cha, S. Avraham, and H.K. Avraham. 2004. Microarray analysis of differentially expressed genes associated with human ovarian cancer. Int. J. Oncol. 24, 847-851.
  19. McGuire, W.P. and M. Markman. 2003. Primary ovarian cancer chemotherapy: Current standards of care. Br. J. Cancer 89, 3-8.
  20. Morrison, J., S.S. Briggs, N.K. Green, C. Thoma, K.D. Fisher, S. Kehoe, and L.W. Seymour. 2009. Cetuximab retargeting of adenovirus via the epidermal growth factor receptor for treatment of intraperitoneal ovarian cancer. Human Gene Ther. 20, 239-251. https://doi.org/10.1089/hum.2008.167
  21. Motoyama, A.B., N.E. Hynes, and H.A. Lane. 2002. The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the ability of epidermal growth factor-related peptides. Cancer Res. 62, 3151-3158.
  22. Tanner, B., D. Hasenclever, K. Stern, W. Schormann, M. Bezler, M. Hermes, M. Brulport, A. Bauer, I.B. Schiffer, S. Gebhard, and et al. 2006. ErbB-3 predicts survival in ovarian cancer. J. Clin. Oncol. 24, 4317-4323. https://doi.org/10.1200/JCO.2005.04.8397
  23. Wickham, T.J. 2000. Targeting adenovirus. Gene Ther. 7, 110-114. https://doi.org/10.1038/sj.gt.3301115
  24. Zeimet, A.G. and C. Marth. 2003. Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol. 4, 415-422. https://doi.org/10.1016/S1470-2045(03)01139-2
  25. Zeimet, A.G., E. Müller-Holzner, A. Schuler, G. Hartung, J. Berger, M. Hermann, M. Widschwendter, J.M. Bergelson, and C. Marth. 2002. Determination of molecules regulating gene delivery using adenoviral vectors in ovarian carcinomas. Gene Ther. 9, 1093-1100. https://doi.org/10.1038/sj.gt.3301775