DOI QR코드

DOI QR Code

Occurrence of Virulence Determinants in Fecal Enterococcus faecalis Isolated from Pigs and Chickens in Korea

  • Hwang, In-Yeong (National Veterinary Research and Quarantine Service, Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF)) ;
  • Lim, Suk-Kyung (National Veterinary Research and Quarantine Service, Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF)) ;
  • Ku, Hyun-Ok (National Veterinary Research and Quarantine Service, Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF)) ;
  • Park, Choi-Kyu (National Veterinary Research and Quarantine Service, Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF)) ;
  • Jung, Suk-Chan (National Veterinary Research and Quarantine Service, Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF)) ;
  • Park, Yong-Ho (Department of Microbiology, College of Veterinary Medicine, Seoul National University) ;
  • Nam, Hyang-Mi (National Veterinary Research and Quarantine Service, Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF))
  • Received : 2011.07.04
  • Accepted : 2011.08.08
  • Published : 2011.12.28

Abstract

Forty-one Enterococcus faecalis (E. faecalis) isolates from feces of pigs and chickens in Korea were screened for the presence of virulence factors. Gelatinase activity (85.4%, 35/41) was the more commonly observed phenotype of virulence in E. faecalis, compared with hemolytic activity (12.2%, 5/41). Thirty-one of 35 (88.6%) gelatinase-positive E. faecalis isolates harbored the gelE and fsrABC genes. A gene encoding for the enterococcal surface protein (Esp) was detected in 24.4% (10/41) of the isolates. All beta-hemolysin-producing isolates harbored the esp gene.

Keywords

References

  1. Archimbaud, C., N. Shankar, C. Forestier, A. Baghdayan, M. S. Gilmore, F. Charbonne, and B. Joly. 2002. In vitro adhesive properties and virulence factors of Enterococcus faecalis strains. Res. Microbiol. 153: 75-80. https://doi.org/10.1016/S0923-2508(01)01291-8
  2. Creti, R., M. Imperi, L. Bertuccini, F. Fabretti, G. Orefici, R. Di Rosa, and L. Baldassarri. 2004. Survey for virulence determinants among Enterococcus faecalis isolated from different sources. J. Med. Microbiol. 53: 13-20. https://doi.org/10.1099/jmm.0.05353-0
  3. De Vuyst, L., M. R. Foulquie Moreno, and H. Revets. 2003. Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int. J. Food Microbiol. 84: 299-318. https://doi.org/10.1016/S0168-1605(02)00425-7
  4. del Campo, R., C. Tenorio, R. Jimenez-Diaz, C. Rubio, R. Gomez-Lus, F. Baquero, and C. Torres. 2001. Bacteriocin production in vancomycin-resistant and vancomycin-susceptible Enterococcus isolates of different origins. Antimicrob. Agents Chemother. 45: 905-912. https://doi.org/10.1128/AAC.45.3.905-912.2001
  5. Dupre, I., S. Zanetti, A. M. Schito, G. Fadda, and L. A. Sechi. 2003. Incidence of virulence determinants in clinical Enterococcus faecium and Enterococcus faecalis isolates collected in Sardinia (Italy). J. Med. Microbiol. 52: 491-498. https://doi.org/10.1099/jmm.0.05038-0
  6. Dutka-Malen, S., S. Evers, and P. Courvalin. 1995. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 33: 24-27.
  7. Eaton, T. J. and M. J. Gasson. 2001. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl. Environ. Microbiol. 67: 1628-1635. https://doi.org/10.1128/AEM.67.4.1628-1635.2001
  8. Ellerbroek, L., K. N. Mac, J. Peters, and L. Hultquist. 2004. Hazard potential from antibiotic-resistant commensals like Enterococci. J. Vet. Med. B Infect. Dis. Vet. Public Health 51: 393-399. https://doi.org/10.1111/j.1439-0450.2004.00782.x
  9. Gilmore, M. S. 2002. The Enterococci: Pathogenesis, Molecular Biology, And Antibiotic Resistance, pp. 301-354. ASM Press, Washington, DC.
  10. Gilmore, M. S., R. A. Segarra, M. C. Booth, C. P. Bogie, L. R. Hall, and D. B. Clewell. 1994. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J. Bacteriol. 176: 7335-7344.
  11. Hwang, I. Y., H. O. Ku, S. K. Lim, C. K. Park, G. S. Jung, S. C. Jung, and H. M. Nam. 2009. Species distribution and resistance patterns to growth-promoting antimicrobials of enterococci isolated from pigs and chickens in Korea. J. Vet. Diagn. Invest. 21: 858-862. https://doi.org/10.1177/104063870902100616
  12. Hwang, I. Y., H. O. Ku, S. K. Lim, K. J. Lee, C. K. Park, G. S. Jung, et al. 2010. Distribution of streptogramin resistance genes and genetic relatedness among quinupristin/dalfopristin-resistant Enterococcus faecium recovered from pigs and chickens in Korea. Res. Vet. Sci. 89: 1-4. https://doi.org/10.1016/j.rvsc.2010.01.011
  13. Ike, Y., H. Hashimoto, and D. B. Clewell. 1984. Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice. Infect. Immun. 45: 528-530.
  14. Ike, Y., H. Hashimoto, and D. B. Clewell. 1987. High incidence of hemolysin production by Enterococcus (Streptococcus) faecalis strains associated with human parenteral infections. J. Clin. Microbiol. 25: 1524-1528.
  15. Jett, B. D., M. M. Huycke, and M. S. Gilmore. 1994. Virulence of enterococci. Clin. Microbiol. Rev. 7: 462-478.
  16. Jett, B. D., H. G. Jensen, R. E. Nordquist, and M. S. Gilmore. 1992. Contribution of the pAD1-encoded cytolysin to the severity of experimental Enterococcus faecalis endophthalmitis. Infect. Immun. 60: 2445-2452.
  17. Kanemitsu, K., T. Nishino, H. Kunishima, N. Okamura, H. Takemura, H. Yamamoto, and M. Kaku. 2001. Quantitative determination of gelatinase activity among enterococci. J. Microbiol. Methods 47: 11-16. https://doi.org/10.1016/S0167-7012(01)00283-4
  18. Murray, B. E. 1990. The life and times of the Enterococcus. Clin. Microbiol. Rev. 3: 46-65.
  19. Nakayama, J., R. Kariyama, and H. Kumon. 2002. Description of a 23.9-kilobase chromosomal deletion containing a region encoding fsr genes which mainly determines the gelatinasenegative phenotype of clinical isolates of Enterococcus faecalis in urine. Appl. Environ. Microbiol. 68: 3152-3155. https://doi.org/10.1128/AEM.68.6.3152-3155.2002
  20. Ogier, J. C. and P. Serror. 2008. Safety assessment of dairy microorganisms: The Enterococcus genus. Int. J. Food Microbiol. 126: 291-301. https://doi.org/10.1016/j.ijfoodmicro.2007.08.017
  21. Poeta, P., D. Costa, N. Klibi, J. Rodrigues, and C. Torres. 2006. Phenotypic and genotypic study of gelatinase and betahaemolysis activities in faecal enterococci of poultry in Portugal. J. Vet. Med. B Infect. Dis. Vet. Public Health 53: 203- 208. https://doi.org/10.1111/j.1439-0450.2006.00941.x
  22. Richards, M. J., J. R. Edwards, D. H. Culver, and R. P. Gaynes. 2000. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect. Control Hosp. Epidemiol. 21: 510-515. https://doi.org/10.1086/501795
  23. Roberts, J. C., K. V. Singh, P. C. Okhuysen, and B. E. Murray. 2004. Molecular epidemiology of the fsr locus and of gelatinase production among different subsets of Enterococcus faecalis isolates. J. Clin. Microbiol. 42: 2317-2320. https://doi.org/10.1128/JCM.42.5.2317-2320.2004
  24. Semedo, T., M. Almeida Santos, P. Martins, M. F. S. Lopes, J. J. F. Marques, R. Tenreiro, and M. T. B. Crespo. 2003. Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. J. Clin. Microbiol. 41: 2569-2576. https://doi.org/10.1128/JCM.41.6.2569-2576.2003
  25. Shankar, N., P. Coburn, C. Pillar, W. Haas, and M. Gilmore. Enterococcal cytolysin: Activities and association with other virulence traits in a pathogenicity island. Int. J. Med. Microbiol. 293: 609-618.
  26. Shankar, N., C. V. Lockatell, A. S. Baghdayan, C. Drachenberg, M. S. Gilmore, and D. E. Johnson. 2001. Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect. Immun. 69: 4366-4372. https://doi.org/10.1128/IAI.69.7.4366-4372.2001
  27. Su, Y. A., M. C. Sulavik, P. He, K. K. Makinen, P. L. Makinen, S. Fiedler, et al. 1991. Nucleotide sequence of the gelatinase gene (gelE) from Enterococcus faecalis subsp. liquefaciens. Infect. Immun. 59: 415-420.
  28. Toledo-Arana, A., J. Valle, C. Solano, M. J. Arrizubieta, C. Cucarella, M. Lamata, et al. 2001. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl. Environ. Microbiol. 67: 4538-4545. https://doi.org/10.1128/AEM.67.10.4538-4545.2001
  29. Valenzuelaa, A. S., N. Omara, H. Abriouela, A. Lucas Lópeza, K. Veljovicb, M. M. Cañameroa, M. K. L. Topisirovicb, and A. Galvez. 2009. Virulence factors, antibiotic resistance, and bacteriocins in enterococci from artisan foods of animal origin. Food Control 20: 381-385. https://doi.org/10.1016/j.foodcont.2008.06.004

Cited by

  1. High prevalence of Enterococcus spp. from dogs with otitis externa vol.35, pp.2, 2011, https://doi.org/10.7853/kjvs.2012.35.2.099
  2. Virulência e formação de biofilme microbiano por Enterococcus faecalis isolados de swabs cloacais de frangos de corte infectados com Eimeria spp vol.33, pp.12, 2013, https://doi.org/10.1590/s0100-736x2013001200007
  3. Antibiotic resistance and virulence of faecal enterococci isolated from food-producing animals in Tunisia vol.65, pp.2, 2015, https://doi.org/10.1007/s13213-014-0908-x
  4. Molecular Mechanism of Quorum-Sensing in Enterococcus faecalis : Its Role in Virulence and Therapeutic Approaches vol.18, pp.5, 2011, https://doi.org/10.3390/ijms18050960
  5. Analysis of Cutaneous Microbiota of Piglets with Hereditary Melanoma vol.49, pp.4, 2011, https://doi.org/10.2478/sab-2018-0035
  6. Presence of Virulence Genes in Enterococcus Species Isolated from Meat Turkeys in Germany Does Not Correlate with Chicken Embryo Lethality vol.2019, pp.None, 2011, https://doi.org/10.1155/2019/6147695
  7. From the Farms to the Dining Table: The Distribution and Molecular Characteristics of Antibiotic-Resistant Enterococcus spp. in Intensive Pig Farming in South Africa vol.9, pp.5, 2021, https://doi.org/10.3390/microorganisms9050882