DOI QR코드

DOI QR Code

Suppressing Erwinia carotovora Pathogenicity by Projecting N-Acyl Homoserine Lactonase onto the Surface of Pseudomonas putida Cells

  • Li, Qianqian (State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University) ;
  • Ni, Hong (School of Life Sciences, Hubei University) ;
  • Meng, Shan (State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University) ;
  • He, Yan (State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University) ;
  • Yu, Ziniu (State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University) ;
  • Li, Lin (State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University)
  • Received : 2011.07.05
  • Accepted : 2011.08.26
  • Published : 2011.12.28

Abstract

N-Acyl homoserine lactones (AHLs) serve as the vital quorum-sensing signals that regulate the virulence of the pathogenic bacterium Erwinia carotovora. In the present study, an approach to efficiently restrain the pathogenicity of E. carotovora-induced soft rot disease is described. Bacillus thuringiensis-derived N-acyl homoserine lactonase (AiiA) was projected onto the surface of Pseudomonas putida cells, and inoculation with both strains was challenged. The previously identified N-terminal moiety of the ice nucleation protein, InaQ-N, was applied as the anchoring motif. A surface display cassette with inaQ-N/aiiA was constructed and expressed under the control of a constitutive promoter in P. putida AB92019. Surface localization of the fusion protein was confirmed by Western blot analysis, flow cytometry, and immunofluorescence microscopy. The antagonistic activity of P. putida MB116 expressing InaQ-N/AiiA toward E. carotovora ATCC25270 was evaluated by challenge inoculation in potato slices at different ratios. The results revealed a remarkable suppressing effect on E. carotovora infection. The active component was further analyzed using different cell fractions, and the cell surface-projected fusion protein was found to correspond to the suppressing effect.

Keywords

References

  1. Augustine, N., P. Kumar, and S. Thomas. 2010. Inhibition of Vibrio cholerae biofilm by AiiA enzyme produced from Bacillus spp. Arch. Microbiol. 192: 1019-1022. https://doi.org/10.1007/s00203-010-0633-1
  2. Chen, R., Z. Zhou, Y. Cao, Y. Bai, and B. Yao. 2010. High yield expression of an AHL-lactonase from Bacillus sp. B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture. Microb. Cell Fact. 9: 39. https://doi.org/10.1186/1475-2859-9-39
  3. Dong, Y. H., A. R. Gusti, Q. Zhang, J. L. Xu, and L. H. Zhang. 2002. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol. 68: 1754-1759. https://doi.org/10.1128/AEM.68.4.1754-1759.2002
  4. Dong, Y. H., L. H. Wang, J. L. Xu, H. B. Zhang, X. F. Zhang, and L. H. Zhang. 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411: 813-817. https://doi.org/10.1038/35081101
  5. Dong, Y. H., J. L. Xu, X. Z. Li, and L. H. Zhang. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorumsensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97: 3526-3531. https://doi.org/10.1073/pnas.97.7.3526
  6. Dong, Y. H. and L. H. Zhang. 2005. Quorum sensing and quorumquenching enzymes. J. Microbiol. 43: 101-109.
  7. Fuqua, C. and E. P. Greenberg. 2002. Listening in on bacteria: Acyl-homoserine lactone signalling. Nat. Rev. Mol. Cell Biol. 3: 685-695. https://doi.org/10.1038/nrm907
  8. Jung, H. C., S. J. Kwon, and J. G. Pan. 2006. Display of a thermostable lipase on the surface of a solvent-resistant bacterium, Pseudomonas putida GM730, and its applications in whole-cell biocatalysis. BMC Biotechnol. 6: 23. https://doi.org/10.1186/1472-6750-6-23
  9. Jung, H. C., J. M. Lebeault, and J. G. Pan. 1998. Surface display of Zymomonas mobilis levansucrase by using the icenucleation protein of Pseudomonas syringae. Nat. Biotechnol. 16: 576-580. https://doi.org/10.1038/nbt0698-576
  10. Leadbetter, J. R. and E. P. Greenberg. 2000. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182: 6921-6926. https://doi.org/10.1128/JB.182.24.6921-6926.2000
  11. Lee, S. J., S. Y. Park, J. J. Lee, D. Y. Yum, B. T. Koo, and J. K. Lee. 2002. Genes encoding the N-acyl homoserine lactonedegrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol. 68: 3919-3924. https://doi.org/10.1128/AEM.68.8.3919-3924.2002
  12. Lee, S. Y., J. H. Choi, and Z. Xu. 2003. Microbial cell-surface display. Trends Biotechnol. 21: 45-52. https://doi.org/10.1016/S0167-7799(02)00006-9
  13. Li, L., D. G. Kang, and H. J. Cha. 2004. Functional display of foreign protein on surface of Escherichia coli using N-terminal domain of ice nucleation protein. Biotechnol. Bioeng. 85: 214- 221. https://doi.org/10.1002/bit.10892
  14. Li, Q., Z. Yu, X. Shao, J. He, and L. Li. 2009. Improved phosphate biosorption by bacterial surface display of phosphatebinding protein utilizing ice nucleation protein. FEMS Microbiol. Lett. 299: 44-52. https://doi.org/10.1111/j.1574-6968.2009.01724.x
  15. Loh, J., E. A. Pierson, L. S. Pierson III, G. Stacey, and A. Chatterjee. 2002. Quorum sensing in plant-associated bacteria. Curr. Opin. Plant Biol. 5: 285-290. https://doi.org/10.1016/S1369-5266(02)00274-1
  16. Qian, G.-L., J.-Q. Fan, D.-F. Chen, Y.-J. Kang, B. Han, B.-S. Hu, and F.-Q. Liu. 2010. Reducing Pectobacterium virulence by expression of an N-acyl homoserine lactonase gene $P_{lpp}$-aiiA in Lysobacter enzymogenes strain OH11. Biol. Control 52: 17-23. https://doi.org/10.1016/j.biocontrol.2009.05.007
  17. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, New York.
  18. Shao, X., M. Jiang, Z. Yu, H. Cai, and L. Li. 2009. Surface display of heterologous proteins in Bacillus thuringiensis using a peptidoglycan hydrolase anchor. Microb. Cell Fact. 8: 48. https://doi.org/10.1186/1475-2859-8-48
  19. von Bodman, S. B., W. D. Bauer, and D. L. Coplin. 2003. Quorum sensing in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 41: 455-482. https://doi.org/10.1146/annurev.phyto.41.052002.095652
  20. Wu, C. H., A. Mulchandani, and W. Chen. 2008. Versatile microbial surface-display for environmental remediation and biofuels production. Trends Microbiol. 16: 181-188. https://doi.org/10.1016/j.tim.2008.01.003
  21. Zhang, L., L. Ruan, C. Hu, H. Wu, S. Chen, Z. Yu, and M. Sun. 2007. Fusion of the genes for AHL-lactonase and S-layer protein in Bacillus thuringiensis increases its ability to inhibit soft rot caused by Erwinia carotovora. Appl. Microbiol. Biotechnol. 74: 667-675. https://doi.org/10.1007/s00253-006-0696-8
  22. Zhang, L. H. 2003. Quorum quenching and proactive host defense. Trends Plant Sci. 8: 238-244. https://doi.org/10.1016/S1360-1385(03)00063-3
  23. Zhu, C., Z. Yu, and M. Sun. 2006. Restraining Erwinia virulence by expression of N-acyl homoserine lactonase gene pro3A-aiiA in Bacillus thuringiensis subsp leesis. Biotechnol. Bioeng. 95: 526-532. https://doi.org/10.1002/bit.21032

Cited by

  1. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase vol.11, pp.None, 2011, https://doi.org/10.1186/1475-2859-11-75
  2. Molecular Characterization of an Ice Nucleation Protein Variant (InaQ) from Pseudomonas syringae and the Analysis of Its Transmembrane Transport Activity in Escherichia coli vol.8, pp.8, 2011, https://doi.org/10.7150/ijbs.4524
  3. Surface Mn(II) oxidation actuated by a multicopper oxidase in a soil bacterium leads to the formation of manganese oxide minerals vol.5, pp.None, 2015, https://doi.org/10.1038/srep10895
  4. Silencing the mob: disrupting quorum sensing as a means to fight plant disease vol.16, pp.3, 2011, https://doi.org/10.1111/mpp.12180
  5. Heterologous Expression of the Marine-Derived Quorum Quenching Enzyme MomL Can Expand the Antibacterial Spectrum of Bacillus brevis vol.17, pp.2, 2019, https://doi.org/10.3390/md17020128
  6. Plant-Microbial Interactions Involving Quorum Sensing Regulation vol.88, pp.5, 2011, https://doi.org/10.1134/s0026261719040131
  7. Silencing of Phytopathogen Communication by the Halotolerant PGPR Staphylococcus Equorum Strain EN21 vol.8, pp.1, 2020, https://doi.org/10.3390/microorganisms8010042
  8. Effect of Quorum Sensing Inhibitor Agents against Pseudomonas aeruginosa vol.46, pp.2, 2011, https://doi.org/10.1134/s1068162020020041
  9. Quorum quenching Bacillus spp.: an alternative biocontrol agent for Vibrio harveyi infection in aquaculture vol.146, pp.None, 2011, https://doi.org/10.3354/dao03619