DOI QR코드

DOI QR Code

Screening and Identification of Antimicrobial Compounds from Streptomyces bottropensis Suppressing Rice Bacterial Blight

  • Park, Sait-Byul (Division of Bioscience and Biotechnology, Konkuk University) ;
  • Lee, In-Ae (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University) ;
  • Suh, Joo-Won (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University) ;
  • Kim, Jeong-Gu (Genomics Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Choong-Hwan (Division of Bioscience and Biotechnology, Konkuk University)
  • 투고 : 2011.06.28
  • 심사 : 2011.08.05
  • 발행 : 2011.12.28

초록

Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating pathogen to Oryza sativa and has been shown to cause bacterial blight. Two bioactive compounds showing antimicrobial activities against Xoo strain KACC 10331 were isolated from a Streptomyces bottropensis strain. The ethyl acetate extract was fractionated on a Sephadex LH-20 column, and then purified by preparative HPLC. The purified compounds were identified as bottromycin A2 and dunaimycin D3S by HR/MS and $^1H$ NMR analyses. The MIC value against Xoo and the lowest concentration still capable of suppressing rice bacterial blight were 2 ${\mu}g$/ml and 16 ${\mu}g$/ml for bottromycin A2, and 64 ${\mu}g$/ml and 0.06 ${\mu}g$/ml for dunaimycin D3S, respectively. These two compounds were shown to exert different bioactivities in vitro and in rice leaf explants.

키워드

참고문헌

  1. Adhikari, T. B., T. W. Mew, and P. S. Teng. 1994. Progress of bacterial blight on rice cultivars carrying different Xa genes for resistance in the field. Plant Dis. 78: 73-77. https://doi.org/10.1094/PD-78-0073
  2. Bajpai, V. K., N. T. Dung, H. J. Suh, and S. C. Kang. 2010. Antibacterial activity of essential oil and extracts of Cleistocalyx operculatus buds against the bacteria of Xanthomonas spp. J. Am. Oil Chem. Soc. 87: 1341-1349. https://doi.org/10.1007/s11746-010-1623-9
  3. Burres, N. S., U. Premachandran, A. Frigo, S. J. Swanson, K. W. Mollison, T. A. Fey, et al. 1991. Dunaimycins, a new complex of spiroketal 24-membered macrolides with immunosuppressive activity III. Immunosuppressive activities of dunaimycins. J. Antibiot. 44: 1331-1341. https://doi.org/10.7164/antibiotics.44.1331
  4. Campbell, C. L. and L. V. Madden. 1991. Introduction to Plant Disease Epidemiology, pp. 107-128.
  5. Cui, C. B., M. Ubukata, H. Kakeya, R. Onose, G. Okada, I. Takahashi, et al. 1996. Acetophthalidin, a novel inhibitor of mammalian cell cycle, produced by a fungus isolated from a sea sediment. J. Antibiot. 49: 216-219. https://doi.org/10.7164/antibiotics.49.216
  6. Dung, N. T., J. M. Kim, and S. C. Kang. 2008. Chemical composition, antimicrobial and antioxidant activities of the essential oil and the ethanol extract of Cleistocalyx operculatus (Roxb.) Merr and Perry buds. Food Chem. Toxicol. 46: 3632- 3639. https://doi.org/10.1016/j.fct.2008.09.013
  7. Emmert, E. A. B. and J. Handelsman. 1999. Biocontrol of plant disease: A (Gram-) positive perspective. FEMS. Microbiol. Lett. 171: 1-9. https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  8. Forbes, G. A. and M. J. Jeger. 1987. Factors affecting the estimation of disease intensity in simulated plant structures. Zeitschr. Pflanzenkrank. Pflanzensch. 94: 113-120.
  9. Hochlowski, J. E., M. M. Mullally, G. M. Brill, and D. N. Whittern. 1991. Dunaimycins, a new complex of spiroketal 24- membered macrolides with immunosuppressive activity. II. Isolation and elucidation of structures. J. Antibiotics. 44: 1318-1330. https://doi.org/10.7164/antibiotics.44.1318
  10. Kaneda, M. 1992. Studies on bottromycins I. $^{1}H$ and $^{13}C$ NMR assignments of Bottromycin A2, the main component of the complex. J. Antibiot. 45: 792-796. https://doi.org/10.7164/antibiotics.45.792
  11. Karwowski, J. P., M. Jackson, M. L. Maus, W. L. Kohl, P. E. Humphrey, and P. M. Tillis. 1991. Dunaimycins, a new complex of spiroketal 24-membered macrolides with immunosuppressive activity. I. Taxonomy of the producing organisms, fermentation and antimicrobial activity. J. Antibiot. 44: 1312-1317. https://doi.org/10.7164/antibiotics.44.1312
  12. Lee, B. M., Y. J. Park, D. S. Park, H. W. Kang, J. G. Kim, E. S. Song, et al. 2005. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC 10331, the bacterial blight pathogen of rice. Nucl. Acids Res. 33: 577-586. https://doi.org/10.1093/nar/gki206
  13. Lim, C. S., J. Y. Kim, J. N. Choi, K. Ponnusamy, Y. T. Jeon, S. U. Kim, et al. 2010. Identification, fermentation, and bioactivity against Xanthomonas oryzae of antimicrobial metabolites isolated from Phomopsis longicolla S1B4. J. Microbiol. Biotechnol. 20: 494-500.
  14. Lin, Y. C. and N. Tanaka. 1968. Mechanism of action of bottromycin in polypeptide biosynthesis. J. Biochem. 63: 1-7.
  15. Lin, Y. C., T. Kinishta, and N. Tanaka. 1968. Mechanism of protein synthesis inhibition by bottromycin A2: Studies with puromycin. J. Antibiot. 21: 471-476. https://doi.org/10.7164/antibiotics.21.471
  16. Nakamura, S., T. Chikaike, K. Karasawa, N. Tanaka, H. Yonehara, and H. Umezawa. 1965. Isolation and characterization of bottromycins A and B. J. Antibiot. 18: 47-52.
  17. Nakamura, S., T. Yajima, Y. Lin, and H. Umezawa. 1967. Isolation and characterization of bottromycin A2, B2, C2. J. Antibiot. 20: 1-5.
  18. Ndonde, M. J. M. and E. Sem. 2000. Preliminary characterization of some Streptomyces species from four Tanzanian soils and their antimicrobial potential against selected plant and animal pathogenic bacteria. J. Microbiol. Biotechnol. 16: 595-599. https://doi.org/10.1023/A:1008916418258
  19. Otaka, T. and A. Kaji. 1983. Mode of action of bottromycin AZ: Effect of bottromycin polysomes. FEBS Lett. 153: 53-59. https://doi.org/10.1016/0014-5793(83)80118-5
  20. Takahashi, Y., H. Naganawa, T. Takita, H. Umezawa, and S. Nakamura. 1976. The revised structure of bottromycin A2. J. Antibiot. 29: 1120-1123. https://doi.org/10.7164/antibiotics.29.1120
  21. Takeuchi, T., H. Sawada, F. Tanaka, and I. Matsuda. 1996. Phylogenetic analysis of Streptomyces spp. causing potato scab based on 16S rRNA sequences. Int. J. Syst. Bacteriol. 46: 476- 479. https://doi.org/10.1099/00207713-46-2-476
  22. Waisvisz, J. M., M. G. V. D. Hoeven, J. V. Peppen, and W. C. M. Zwennis. 1957. Bottromycin. I. A new sulfur-containing antibiotic. J. Am. Chem. Soc. 79: 4520-4521. https://doi.org/10.1021/ja01573a072
  23. Yan Min, V., T. Da Quun, T. Shi Min, and Z. Ding. 2000. The antagonism of 26 strains of Streptomyces sp. against several vegetables pathogens. Hebaei Agric. Univ. 23: 65-68.

피인용 문헌

  1. Identification and characterisation of the gene cluster for the anti-MRSA antibiotic bottromycin: expanding the biosynthetic diversity of ribosomal peptides vol.3, pp.12, 2011, https://doi.org/10.1039/c2sc21190d
  2. Characterization and identification of actinomycetes isolated from ‘fired plots’ under shifting cultivation in northeast Himalaya, India vol.63, pp.2, 2011, https://doi.org/10.1007/s13213-012-0504-x
  3. Taxonomic and functional diversity of Streptomyces in a forest soil vol.342, pp.2, 2011, https://doi.org/10.1111/1574-6968.12126
  4. Biological Control of Xanthomonas Oryzae pv. Oryzae Causing Rice Bacterial Blight Disease by Streptomyces toxytricini VN08-A-12, Isolated from Soil and Leaf-litter Samples in Vietnam vol.19, pp.3, 2011, https://doi.org/10.4265/bio.19.103
  5. Suppressing activity of staurosporine from Streptomyces sp. MJM4426 against rice bacterial blight disease vol.120, pp.4, 2011, https://doi.org/10.1111/jam.13034
  6. Cloning and characterization of filamentous temperature-sensitive protein Z from Xanthomonas oryzae pv . Oryzae vol.5, pp.1, 2011, https://doi.org/10.1186/s40064-016-1876-3
  7. Anthranilamide from Streptomyces spp. inhibited Xanthomonas oryzae biofilm formation without affecting cell growth vol.61, pp.6, 2011, https://doi.org/10.1007/s13765-018-0405-1
  8. Inhibitory Effects of Carbazomycin B Produced by Streptomyces roseoverticillatus 63 Against Xanthomonas oryzae pv. oryzae vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.616937
  9. Bottromycins - biosynthesis, synthesis and activity vol.38, pp.9, 2011, https://doi.org/10.1039/d0np00097c