DOI QR코드

DOI QR Code

Time-Dependent Hepatic Proteome Analysis in Lean and Diet-Induced Obese Mice

  • Oh, Tae-Seok (Department of Biotechnology, Daegu University) ;
  • Kwon, Eun-Young (Department of Food Science and Nutrition, Kyungpook National University) ;
  • Choi, Jung-Won (Department of Biotechnology, Daegu University) ;
  • Choi, Myung-Sook (Department of Food Science and Nutrition, Kyungpook National University) ;
  • Yun, Jong-Won (Department of Biotechnology, Daegu University)
  • 투고 : 2011.07.26
  • 심사 : 2011.08.16
  • 발행 : 2011.12.28

초록

C57BL/6J mice have been widely used as a diet-induced obesity model because they trigger common features of the human metabolic syndrome. In the present study, C57BL/6J male mice were fed either a high-fat diet (HFD) or normal diet (ND) during a 24-week period, and then the age-dependent liver proteome of mice in two groups was analyzed using 2-DE combined with MALDI-TOF-MS. Among identified proteins, up-regulated proteins were subdivided to early (during the first 4 weeks) and late (20~24 weeks) markers that played a role in diet-induced obesity development. Important early markers included ketohexokinase and prohibitin, and late markers included the 75 kDa glucose-regulated protein, citrate synthase, and selenium-binding liver protein. Of these, the 75 kDa glucosere-gulated protein has already been linked to obesity; however, prohibitin protein involved in obesity was identified for the first time in this study. In order to validate the proteomic results and gain insight into metabolic changes between the two groups, we further confirmed the expression pattern of some proteins of interest by Western blot analysis. Combined results of proteomic analysis with Western blot analysis revealed that antioxidant enzymes were progressively decreased, whereas cytoskeletal proteins were time-dependently increased in HFD mice.

키워드

참고문헌

  1. Aviram, M. and M. Rosenblat. 2004. Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic. Biol. Med. 37: 1304-1316. https://doi.org/10.1016/j.freeradbiomed.2004.06.030
  2. Bailey, S. M., G. Robinson, A. Pinner, L. Chamlee, E. Ulasova, M. Pompilius, et al. 2006. S-Adenosylmethionine prevents chronic alcohol-induced mitochondrial dysfunction in the rat liver. Am. J. Physiol. Gastrointest Liver Physiol. 291: G857-G867. https://doi.org/10.1152/ajpgi.00044.2006
  3. Barcelo-Batllori, S., H. Corominola, M. Claret, I. Canals, J. Guinovart, and R. Gomis. 2005. Target identification of the novel antiobesity agent tungstate in adipose tissue from obese rats. Proteomics 5: 4927-4935. https://doi.org/10.1002/pmic.200500050
  4. Bligh, E. G. and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911- 917. https://doi.org/10.1139/o59-099
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Carmiel-Haggai, M., A. I. Cederbaum, and N. Nieto. 2005. A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. FASEB J. 19: 136-138.
  7. Carroll, L., J. Voisey, and A. Van Daal. 2004. Mouse models of obesity. Clin. Dermatol. 22: 345-349. https://doi.org/10.1016/j.clindermatol.2004.01.004
  8. Chang, S., B. Graham, F. Yakubu, D. Lin, J. C. Peters, and J. O. Hill. 1990. Metabolic differences between obesity-prone and obesity-resistant rats. Am. J. Physiol. 259: R1103-R1110.
  9. Choi, J. W., X. Wang, J. I. Joo, D. H. Kim, T. S. Oh, D. K. Choi, et al. 2010. Plasma proteome analysis in diet-induced obesityprone and obesity-resistant rats. Proteomics 10: 4386-4400. https://doi.org/10.1002/pmic.201000391
  10. De Roos, B., V. Rungapamestry, K. Ross, G. Rucklidge, M. Reid, G. Duncan, et al. 2009. Attenuation of inflammation and cellular stress-related pathways maintains insulin sensitivity in obese type I interleukin-1 receptor knockout mice on a high-fat diet. Proteomics 9: 3244-3256. https://doi.org/10.1002/pmic.200800761
  11. Delanote, V., J. Vandekerckhove, and J. Gettemans. 2005. Plastins: Versatile modulators of actin organization in (patho)physiological cellular processes. Acta Pharmacol. Sin. 26: 769-779. https://doi.org/10.1111/j.1745-7254.2005.00145.x
  12. Douette, P., R. Navet, P. Gerkens, E. De Pauw, P. Leprince, C. Sluse-Goffart, et al. 2005. Steatosis-induced proteomic changes in liver mitochondria evidenced by two-dimensional differential in-gel electrophoresis. J. Proteome Res. 4: 2024-2031. https://doi.org/10.1021/pr050187z
  13. Eccleston, H. B., K. K. Andringa, A. M. Betancourt, A. L. King, S. K. Mantena, T. M. Swain, et al. 2010. Chronic exposure to a high fat diet induces hepatic steatosis, impairs nitric oxide bioavailability, and modifies the mitochondrial proteome in mice. Antioxid. Redox Signal. 15: 447-459.
  14. Felts, S. J., B. A. Owen, P. Nguyen, J. Trepel, D. B. Donner, and D. O. Toft. 2000. The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 275: 3305-3312. https://doi.org/10.1074/jbc.275.5.3305
  15. Fraulob, J. C., R. Ogg-Diamantino, C. Fernandes-Santos, M. B. Aguila, and C. A. Mandarim-De-Lacerda. 2010. A mouse model of metabolic syndrome: Insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. J. Clin. Biochem. Nutr. 46: 212-223. https://doi.org/10.3164/jcbn.09-83
  16. Friedman, J. M. 2009. Obesity: Causes and control of excess body fat. Nature 459: 340-342. https://doi.org/10.1038/459340a
  17. Gazzana, G. and J. Borlak. 2007. Improved method for proteome mapping of the liver by 2-DE MALDI-TOF MS. J. Proteome Res. 6: 3143-3151. https://doi.org/10.1021/pr070097p
  18. Gazzana, G. and J. Borlak. 2009. An update on the mouse liver proteome. Proteome Sci. 7: 35. https://doi.org/10.1186/1477-5956-7-35
  19. Gregoire, F. M., Q. Zhang, S. J. Smith, C. Tong, D. Ross, H. Lopez, et al. 2002. Diet-induced obesity and hepatic gene expression alterations in C57BL/6J and ICAM-1-deficient mice. Am. J. Physiol. Endocrinol. Metab. 282: E703-E713.
  20. Grimm-Gunter, E. M., C. Revenu, S. Ramos, I. Hurbain, N. Smyth, E. Ferrary, et al. 2009. Plastin 1 binds to keratin and is required for terminal web assembly in the intestinal epithelium. Mol. Biol. Cell 20: 2549-2562. https://doi.org/10.1091/mbc.E08-10-1030
  21. Iossa, S., L. Lionetti, M. P. Mollica, R. Crescenzo, A. Barletta, and G. Liverini. 2000. Effect of long-term high-fat feeding on energy balance and liver oxidative activity in rats. Br. J. Nutr. 84: 377-385.
  22. Iossa, S., M. P. Mollica, L. Lionetti, R. Crescenzo, M. Botta, and G. Liverini. 2002. Skeletal muscle oxidative capacity in rats fed high-fat diet. Int. J. Obes. Relat. Metab. Disord. 26: 65-72. https://doi.org/10.1038/sj.ijo.0801844
  23. Jernas, M., B. Olsson, P. Arner, P. Jacobson, L. Sjostrom, A. Walley, et al. 2009. Regulation of carboxylesterase 1 (CES1) in human adipose tissue. Biochem. Biophys. Res. Commun. 383: 63-67. https://doi.org/10.1016/j.bbrc.2009.03.120
  24. Ji, H. and M. I. Friedman. 2007. Reduced capacity for fatty acid oxidation in rats with inherited susceptibility to diet-induced obesity. Metabolism 56: 1124-1130. https://doi.org/10.1016/j.metabol.2007.04.006
  25. Jiang, L., Q. Wang, Y. Yu, F. Zhao, P. Huang, R. Zeng, et al. 2009. Leptin contributes to the adaptive responses of mice to high-fat diet intake through suppressing the lipogenic pathway. PLoS One 4: e6884. https://doi.org/10.1371/journal.pone.0006884
  26. Joo, J. I., D. H. Kim, J. W. Choi, and J. W. Yun. 2010. Proteomic analysis for antiobesity potential of capsaicin on white adipose tissue in rats fed with a high fat diet. J. Proteome Res. 9: 2977-2987. https://doi.org/10.1021/pr901175w
  27. Joo, J. I., T. S. Oh, D. H. Kim, D. K. Choi, X. Wang, J. W. Choi, et al. 2011. Differential expression of adipose tissue proteins between obesity-susceptible and -resistant rats fed a high-fat diet. Proteomics 11: 1429-1448. https://doi.org/10.1002/pmic.201000515
  28. Jordan, M. A. and L. Wilson. 2004. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4: 253-265. https://doi.org/10.1038/nrc1317
  29. Kahn, B. B., T. Alquier, D. Carling, and D. G. Hardie. 2005. AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell. Metab. 1: 15-25. https://doi.org/10.1016/j.cmet.2004.12.003
  30. Kim, D. H., J. W. Choi, J. I. Joo, X. Wang, D. K. Choi, T. S. Oh, et al. 2011. Changes in expression of skeletal muscle proteins between obesity-prone and obesity-resistant rats induced by a high-fat diet. J. Proteome Res. 10: 1281-1292. https://doi.org/10.1021/pr101048q
  31. Kim, H. J., J. H. Kim, S. Noh, H. J. Hur, M. J. Sung, J. T. Hwang, et al. 2011. Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J. Proteome Res. 10: 722-731. https://doi.org/10.1021/pr100892r
  32. Kim, S. W., H. J. Hwang, Y. M. Baek, S. H. Lee, H. S. Hwang, and J. W. Yun. 2008. Proteomic and transcriptomic analysis for streptozotocin-induced diabetic rat pancreas in response to fungal polysaccharide treatments. Proteomics 8: 2344-2361. https://doi.org/10.1002/pmic.200700779
  33. Kim, S. W., H. J. Hwang, E. J. Cho, J. Y. Oh, Y. M. Baek, J. W. Choi, et al. 2006. Time-dependent plasma protein changes in streptozotocin-induced diabetic rats before and after fungal polysaccharide treatments. J. Proteome Res. 5: 2966-2976. https://doi.org/10.1021/pr0602601
  34. Kovacs, W. J., L. M. Olivier, and S. K. Krisans. 2002. Central role of peroxisomes in isoprenoid biosynthesis. Prog. Lipid Res. 41: 369-391. https://doi.org/10.1016/S0163-7827(02)00002-4
  35. Kumar, S. G., M. A. Rahman, S. H. Lee, H. S. Hwang, H. A. Kim, and J. W. Yun. 2009. Plasma proteome analysis for antiobesity and anti-diabetic potentials of chitosan oligosaccharides in ob/ob mice. Proteomics 9: 2149-2162. https://doi.org/10.1002/pmic.200800571
  36. Lage, R., C. Dieguez, A. Vidal-Puig, and M. Lopez. 2008. AMPK: A metabolic gauge regulating whole-body energy homeostasis. Trends Mol. Med. 14: 539-549. https://doi.org/10.1016/j.molmed.2008.09.007
  37. Lavoie, J. M. and M. S. Gauthier. 2006. Regulation of fat metabolism in the liver: Link to non-alcoholic hepatic steatosis and impact of physical exercise. Cell. Mol. Life Sci. 63: 1393- 1409. https://doi.org/10.1007/s00018-006-6600-y
  38. Lee, A. S. 2001. The glucose-regulated proteins: Stress induction and clinical applications. Trends Biochem. Sci. 26: 504-510. https://doi.org/10.1016/S0968-0004(01)01908-9
  39. Liang, P. H., T. P. Ko, and A. H. Wang. 2002. Structure, mechanism and function of prenyltransferases. Eur. J. Biochem. 269: 3339-3354. https://doi.org/10.1046/j.1432-1033.2002.03014.x
  40. Little, E., M. Ramakrishnan, B. Roy, G. Gazit, and A. S. Lee. 1994. The glucose-regulated proteins (GRP78 and GRP94): Functions, gene regulation, and applications. Crit. Rev. Eukaryot. Gene Expr. 4: 1-18. https://doi.org/10.1615/CritRevEukarGeneExpr.v4.i1.10
  41. Mannisto, P. T., J. Venalainen, A. Jalkanen, and J. A. Garcia- Horsman. 2007. Prolyl oligopeptidase: A potential target for the treatment of cognitive disorders. Drug News Perspect. 20: 293-305. https://doi.org/10.1358/dnp.2007.20.5.1120216
  42. Matschinsky, F. M. 1990. Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes 39: 647-652. https://doi.org/10.2337/diabetes.39.6.647
  43. Mattow, J., I. Demuth, G. Haeselbarth, P. R. Jungblut, and J. Klose. 2006. Selenium-binding protein 2, the major hepatic target for acetaminophen, shows sex differences in protein abundance. Electrophoresis 27: 1683-1691. https://doi.org/10.1002/elps.200500703
  44. Merkwirth, C. and T. Langer. 2009. Prohibitin function within mitochondria: Essential roles for cell proliferation and cristae morphogenesis. Biochim. Biophys. Acta 1793: 27-32.
  45. Mi, L., N. Gan, A. Cheema, S. Dakshanamurthy, X. Wang, D. C. Yang, et al. 2009. Cancer preventive isothiocyanates induce selective degradation of cellular alpha- and beta-tubulins by proteasomes. J. Biol. Chem. 284: 17039-17051. https://doi.org/10.1074/jbc.M901789200
  46. Mishra, S., L. C. Murphy, and L. J. Murphy. 2006. The Prohibitins: Emerging roles in diverse functions. J. Cell. Mol. Med. 10: 353-363. https://doi.org/10.1111/j.1582-4934.2006.tb00404.x
  47. Moraes, R. C., A. Blondet, K. Birkenkamp-Demtroeder, J. Tirard, T. F. Orntoft, A. Gertler, et al. 2003. Study of the alteration of gene expression in adipose tissue of diet-induced obese mice by microarray and reverse transcription-polymerase chain reaction analyses. Endocrinology 144: 4773-4782. https://doi.org/10.1210/en.2003-0456
  48. Morain, P., P. Lestage, G. De Nanteuil, R. Jochemsen, J. L. Robin, D. Guez, et al. 2002. S 17092: A prolyl endopeptidase inhibitor as a potential therapeutic drug for memory impairment. Preclinical and clinical studies. CNS Drug Rev. 8: 31-52.
  49. Osman, C., C. Merkwirth, and T. Langer. 2009. Prohibitins and the functional compartmentalization of mitochondrial membranes. J. Cell Sci. 122: 3823-3830. https://doi.org/10.1242/jcs.037655
  50. Otaegui, P. J., T. Ferre, E. Riu, and F. Bosch. 2003. Prevention of obesity and insulin resistance by glucokinase expression in skeletal muscle of transgenic mice. FASEB J. 17: 2097-2099.
  51. Otsuka, M., M. Kato, T. Yoshikawa, H. Chen, E. J. Brown, Y. Masuho, et al. 2001. Differential expression of the L-plastin gene in human colorectal cancer progression and metastasis. Biochem. Biophys. Res. Commun. 289: 876-881. https://doi.org/10.1006/bbrc.2001.6047
  52. Ouyang, X., P. Cirillo, Y. Sautin, S. Mccall, J. L. Bruchette, A. M. Diehl, et al. 2008. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J. Hepatol. 48: 993-999. https://doi.org/10.1016/j.jhep.2008.02.011
  53. Park, J. Y., J. K. Seong, and Y. K. Paik. 2004. Proteomic analysis of diet-induced hypercholesterolemic mice. Proteomics 4: 514-523. https://doi.org/10.1002/pmic.200300623
  54. Ran, Q., R. Wadhwa, R. Kawai, S. C. Kaul, R. N. Sifers, R. J. Bick, et al. 2000. Extramitochondrial localization of mortalin/ mthsp70/PBP74/GRP75. Biochem. Biophys. Res. Commun. 275: 174-179. https://doi.org/10.1006/bbrc.2000.3237
  55. Rao, G., E. Xia, M. J. Nadakavukaren, and A. Richardson. 1990. Effect of dietary restriction on the age-dependent changes in the expression of antioxidant enzymes in rat liver. J. Nutr. 120: 602-609.
  56. Rector, R. S., J. P. Thyfault, R. T. Morris, M. J. Laye, S. J. Borengasser, F. W. Booth, et al. 2008. Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima fatty rats. Am. J. Physiol. Gastrointest. Liver Physiol. 294: G619-G626. https://doi.org/10.1152/ajpgi.00428.2007
  57. Reilly, J. F., S. D. Martinez, G. Mickey, and P. A. Maher. 2002. A novel role for farnesyl pyrophosphate synthase in fibroblast growth factor-mediated signal transduction. Biochem. J. 366: 501-510. https://doi.org/10.1042/BJ20020560
  58. Sanchez-Quiles, V., E. Santamaria, V. Segura, L. Sesma, J. Prieto, and F. J. Corrales. 2010. Prohibitin deficiency blocks proliferation and induces apoptosis in human hepatoma cells: Molecular mechanisms and functional implications. Proteomics 10: 1609-1620. https://doi.org/10.1002/pmic.200900757
  59. Schmid, G. M., V. Converset, N. Walter, M. V. Sennitt, K. Y. Leung, H. Byers, et al. 2004. Effect of high-fat diet on the expression of proteins in muscle, adipose tissues, and liver of C57BL/6 mice. Proteomics 4: 2270-2282. https://doi.org/10.1002/pmic.200300810
  60. Seppala-Lindroos, A., S. Vehkavaara, A. M. Hakkinen, T. Goto, J. Westerbacka, A. Sovijarvi, et al. 2002. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J. Clin. Endocrinol. Metab. 87: 3023- 3028. https://doi.org/10.1210/jc.87.7.3023
  61. Shevchenko, A., H. Tomas, J. Havlis, J. V. Olsen, and M. Mann. 2006. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1: 2856-2860.
  62. Shi, R., C. Kumar, A. Zougman, Y. Zhang, A. Podtelejnikov, J. Cox, et al. 2007. Analysis of the mouse liver proteome using advanced mass spectrometry. J. Proteome Res. 6: 2963-2972. https://doi.org/10.1021/pr0605668
  63. Song, H. Y., J. D. Dunbar, Y. X. Zhang, D. Guo, and D. B. Donner. 1995. Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J. Biol. Chem. 270: 3574-3581. https://doi.org/10.1074/jbc.270.8.3574
  64. Song, Y., Y. Hao, A. Sun, T. Li, W. Li, L. Guo, et al. 2006. Sample preparation project for the subcellular proteome of mouse liver. Proteomics 6: 5269-5277. https://doi.org/10.1002/pmic.200500893
  65. Speakman, J., C. Hambly, S. Mitchell, and E. Krol. 2008. The contribution of animal models to the study of obesity. Lab. Anim. 42: 413-432. https://doi.org/10.1258/la.2007.006067
  66. Tarrago, T., N. Kichik, B. Claasen, R. Prades, M. Teixido, and E. Giralt. 2008. Baicalin, a prodrug able to reach the CNS, is a prolyl oligopeptidase inhibitor. Bioorg. Med. Chem. 16: 7516- 7524. https://doi.org/10.1016/j.bmc.2008.04.067
  67. Theiss, A. L. and S. V. Sitaraman. 2011. The role and therapeutic potential of prohibitin in disease. Biochim. Biophys. Acta 1813: 1137-1143. https://doi.org/10.1016/j.bbamcr.2011.01.033
  68. Thomas-Moya, E., M. Gianotti, I. Llado, and A. M. Proenza. 2006. Effects of caloric restriction and gender on rat serum paraoxonase 1 activity. J. Nutr. Biochem. 17: 197-203. https://doi.org/10.1016/j.jnutbio.2005.07.004
  69. Thome-Kromer, B., I. Bonk, M. Klatt, G. Nebrich, M. Taufmann, S. Bryant, et al. 2003. Toward the identification of liver toxicity markers: A proteome study in human cell culture and rats. Proteomics 3: 1835-1862. https://doi.org/10.1002/pmic.200300552
  70. Tipoe, G. L., C. T. Ho, E. C. Liong, T. M. Leung, T. Y. Lau, M. L. Fung, et al. 2009. Voluntary oral feeding of rats not requiring a very high fat diet is a clinically relevant animal model of nonalcoholic fatty liver disease (NAFLD). Histol. Histopathol. 24: 1161-1169.
  71. Warden, C. H., J. S. Fisler, G. Espinal, J. Graham, P. J. Havel, and B. Perroud. 2009. Maternal influence of prolyl endopeptidase on fat mass of adult progeny. Int. J. Obes. (Lond) 33: 1013- 1022. https://doi.org/10.1038/ijo.2009.129
  72. Westerbacka, J., K. Lammi, A. M. Hakkinen, A. Rissanen, I. Salminen, A. Aro, et al. 2005. Dietary fat content modifies liver fat in overweight nondiabetic subjects. J. Clin. Endocrinol. Metab. 90: 2804-2809. https://doi.org/10.1210/jc.2004-1983
  73. Wiegand, G. and S. J. Remington. 1986. Citrate synthase: Structure, control, and mechanism. Annu. Rev. Biophys. Biophys. Chem. 15: 97-117. https://doi.org/10.1146/annurev.bb.15.060186.000525
  74. Woods, A., D. Azzout-Marniche, M. Foretz, S. C. Stein, P. Lemarchand, P. Ferre, et al. 2000. Characterization of the role of AMP-activated protein kinase in the regulation of glucoseactivated gene expression using constitutively active and dominant negative forms of the kinase. Mol. Cell. Biol. 20: 6704-6711. https://doi.org/10.1128/MCB.20.18.6704-6711.2000
  75. Xie, Z., H. Li, K. Wang, J. Lin, Q. Wang, G. Zhao, et al. 2010. Analysis of transcriptome and metabolome profiles alterations in fatty liver induced by high-fat diet in rat. Metabolism 59: 554-560. https://doi.org/10.1016/j.metabol.2009.08.022
  76. Zhang, X., J. Yang, Y. Guo, H. Ye, C. Yu, C. Xu, et al. 2010. Functional proteomic analysis of nonalcoholic fatty liver disease in rat models: Enoyl-coenzyme A hydratase down-regulation exacerbates hepatic steatosis. Hepatology 51: 1190-1199. https://doi.org/10.1002/hep.23486

피인용 문헌

  1. Extracting Time-dependent Obese-diabetic Specific Networks in Hepatic Proteome Analysis vol.11, pp.12, 2011, https://doi.org/10.1021/pr300711a
  2. Inhibitory Roles of Prohibitin and Chemerin in FSH-Induced Rat Granulosa Cell Steroidogenesis vol.154, pp.2, 2013, https://doi.org/10.1210/en.2012-1836
  3. Dynamic Regulation of Hepatic Lipid Droplet Properties by Diet vol.8, pp.7, 2013, https://doi.org/10.1371/journal.pone.0067631
  4. Diastolic Dysfunction Induced by a High-Fat Diet Is Associated with Mitochondrial Abnormality and Adenosine Triphosphate Levels in Rats vol.30, pp.4, 2011, https://doi.org/10.3803/enm.2015.30.4.557
  5. Reduced mitochondrial mass and function add to age‐related susceptibility toward diet‐induced fatty liver in C57BL/6J mice vol.4, pp.19, 2016, https://doi.org/10.14814/phy2.12988
  6. Effect of diets supplemented with different conjugated linoleic acid (CLA) isomers on protein expression in C57/BL6 mice vol.11, pp.1, 2011, https://doi.org/10.1186/s12263-016-0542-2
  7. Differences in energy metabolism and mitochondrial redox status account for the differences in propensity for developing obesity in rats fed on high‐fat diet vol.9, pp.3, 2011, https://doi.org/10.1002/fsn3.2134