References
- Alexander, N. J., S. P. McCormick, C. Waalwijk, T. van der Lee, and R. H. Proctor. 2011. The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet. Biol. 48: 485-495. https://doi.org/10.1016/j.fgb.2011.01.003
- Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169.
- Arpigny, J. L. and K. E. Jaeger. 1999. Bacterial lipolytic/enzymes: Classification and properties. Biochem. J. 343: 177-183. https://doi.org/10.1042/0264-6021:3430177
- Bornscheuer, U. T. 2002. Microbial carboxyl esterases: Classification, properties and application in biocatalysis. FEMS. Microbiol. Rev. 26: 73-81. https://doi.org/10.1111/j.1574-6976.2002.tb00599.x
- Cundliffe, E. 1989. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43: 207-233. https://doi.org/10.1146/annurev.mi.43.100189.001231
- Gross, F., E. A. Lewis, M. Piraee, K. H. Van Pee, L. C. Vining, and R. L. White. 2002. Isolation of 3'-O-acetylchloramphenicol: A possible intermediate in chloramphenicol biosynthesis. Bioorg. Med. Chem. Lett. 12: 283-286. https://doi.org/10.1016/S0960-894X(01)00739-9
- Handelsman, J. 2004. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68: 669-685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
- He, J., N. Magarvey, M. Piraee, and L. C. Vining. 2001. The gene cluster for chloramphenicol biosynthesis in Streptomyces venezuelae ISP5230 includes novel Shikimate pathway homologues and a monomodular nonribosomal peptide synthetase gene. Microbiology 147: 2817-2829.
- Henne, A., R. A. Schmitz, M. Bomeke, G. Gottschalk, and R. Daniel. 2000. Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl. Environ. Microbiol. 66: 3113-3116. https://doi.org/10.1128/AEM.66.7.3113-3116.2000
- Hong, K. S., H. K. Lim, E. J. Chung, E. J. Park, M. H. Lee, J. C. Kim, G. J. Choi, K. Y. Cho, and S. W. Lee. 2007. Selection and characterization of forest soil metagenome genes encoding lipolytic enzymes. J. Microbiol. Biotechnol. 17: 1655-1660.
- Hu, Y., G. Zhang, A. Li, J. Chen, and L. Ma. 2008. Cloning and enzymatic characterization of a xylanase gene from a soilmetagenomic library with an efficient approach. Appl. Microbiol. Biotechnol. 80: 823-830. https://doi.org/10.1007/s00253-008-1636-6
- Jaeger, K. E., B. W. Dijkstra, and M. T. Reetz. 1999. Bacterial biocatalysts: Molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315-351. https://doi.org/10.1146/annurev.micro.53.1.315
- Jeanmougin, F., J. D. Thompson, M. Gouy, D. G. Higgins, and T. J. Gibson. 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23: 403-405. https://doi.org/10.1016/S0968-0004(98)01285-7
- Jeon, J. H., J. T. Kim, S. G. Kang, J. H. Lee, and S. J. Kim. 2009. Characterization and its potential application of two esterases derived from the arctic sediment metagenome. Mar. Biotechnol. (NY) 11: 307-316. https://doi.org/10.1007/s10126-008-9145-2
- Kim, Y. J., G. S. Choi, S. B. Kim, G. S. Yoon, Y. S. Kim, and Y. W. Ryu. 2006. Screening and characterization of a novel esterase from a metagenomic library. Protein Expr. Purif. 45: 315-323. https://doi.org/10.1016/j.pep.2005.06.008
- Kimura, M., I. Kaneko, M. Komiyama, A. Takatsuki, H. Koshino, K. Yoneyama, and I. Yamaguchi. 1998. Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. Cloning and characterization of Tri101. J. Biol. Chem. 273: 1654-1661. https://doi.org/10.1074/jbc.273.3.1654
- Kneusel, R. E., E. Schiltz, and U. Matern. 1994. Molecular characterization and cloning of an esterase which inactivates the macrolide toxin brefeldin A. J. Biol. Chem. 269: 3449-3456.
- Lee, M. H., K. S. Hong, S. Malhotra, J. H. Park, E. C. Hwang, H. K. Choi, Y. S. Kim, W. Tao, and S. W. Lee. 2010. A new esterase EstD2 isolated from plant rhizosphere soil metagenome. Appl. Microbiol. Biotechnol. 88: 1125-1134. https://doi.org/10.1007/s00253-010-2729-6
- Lee, S. W., L. Won, H. K. Lim, J. C. Kim, G. J. Choi, and K. Y. Cho. 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol. 65: 720-726. https://doi.org/10.1007/s00253-004-1722-3
- Lewis, E. A., T. L. Adamek, L. C. Vining, and R. L. White. 2003. Metabolites of a blocked chloramphenicol producer. J. Nat. Prod. 66: 62-66. https://doi.org/10.1021/np020306e
- Lim, H. K., E. J. Chung, J. C. Kim, G. J. Choi, K. S. Jang, Y. R. Chung, K. Y. Cho, and S. W. Lee. 2005. Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl. Environ. Microbiol. 71: 7768-7777. https://doi.org/10.1128/AEM.71.12.7768-7777.2005
- Mandrich, L., V. Menchise, V. Alterio, G. D. Simone, C. Pedone, M. Rossi, and G. Manco. 2008. Functional and structural features of the oxyanion hole in a thermophilic esterase from Alicyclobacillus acidocaldarius. Proteins 71: 1721-1731.
- McCormick, S. P. and N. J. Alexander. 2002. Fusarium Tri8 encodes a trichothecene C-3 esterase. Appl. Environ. Microbiol. 68: 2959-2964. https://doi.org/10.1128/AEM.68.6.2959-2964.2002
- Nakagawa, Y., Y. Nitahara, and S. Miyamura. 1979. Kinetic studies on enzymatic acetylation of chloramphenicol in Streptococcus faecalis. Antimicrob. Agents Chemother. 16: 719-723. https://doi.org/10.1128/AAC.16.6.719
- Nakano, H., Y. Matsuhashi, T. Takeuchi, and H. Umezawa. 1977. Distribution of chloramphenicol acetyltransferase and chloramphenicol-3-acetate esterase among Streptomyces and Corynebacterium. J. Antibiot. (Tokyo) 30: 76-82. https://doi.org/10.7164/antibiotics.30.76
- Ping, L., R. Buchler, A. Mithofer, A. Svatos, D. Spiteller, K. Dettner, et al. 2007. A novel Dps-type protein from insect gut bacteria catalyses hydrolysis and synthesis of N-acyl amino acids. Environ. Microbiol. 9: 1572-1583. https://doi.org/10.1111/j.1462-2920.2007.01279.x
- Pongs, O. 1979. Chloramphenicol. pp. 26-42. In F. E. Hahn (ed.). Antibiotics: Mechanism of Action of Antibacterial Agents. Springer-Verlag, Berlin.
- Rhee, J. K., D. G. Ahn, Y. G. Kim, and J. W. Oh. 2005. New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl. Environ. Microbiol. 71: 817-825. https://doi.org/10.1128/AEM.71.2.817-825.2005
- Riaz, K., C. Elmerich, D. Moreira, A. Raffoux, Y. Dessaux, and D. Faure. 2008. A metagenomic analysis of soil bacteria extends the diversity of quorum-quenching lactonases. Environ. Microbiol. 10: 560-570. https://doi.org/10.1111/j.1462-2920.2007.01475.x
- Shaw, W. V. 1983. Chloramphenicol acetyltransferase: Enzymology and molecular biology. Crit. Rev. Biochem. 14: 1-46. https://doi.org/10.3109/10409238309102789
- Sohaskey, C. D. 2004. Enzymatic inactivation and reactivation of chloramphenicol by Mycobacterium tuberculosis and Mycobacterium bovis. FEMS. Microbiol. Lett. 240: 187-192. https://doi.org/10.1016/j.femsle.2004.09.028
- Sohaskey, C. D. and A. G. Barbour. 1999. Esterases in serumcontaining growth media counteract chloramphenicol acetyltransferase activity in vitro. Antimicrob. Agents Chemother. 43: 655-660.
- Sohaskey, C. D. and A. G. Barbour. 2000. Spirochaeta aurantia has diacetyl chloramphenicol esterase activity. J. Bacteriol. 182: 1930-1934. https://doi.org/10.1128/JB.182.7.1930-1934.2000
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
- Zhou, J., M. A. Bruns, and J. M. Tiedje. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62: 316-322.
Cited by
- Cloning and Identification of a New Group Esterase (Est5S) from Noncultured Rumen Bacterium vol.22, pp.8, 2012, https://doi.org/10.4014/jmb.1201.12070
- Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs vol.4, pp.None, 2011, https://doi.org/10.3389/fmicb.2013.00145
- Inhibition of the growth of Bacillus subtilis DSM10 by a newly discovered antibacterial protein from the soil metagenome vol.6, pp.2, 2011, https://doi.org/10.1080/21655979.2015.1018493
- Characterization of a Soil Metagenome-Derived Gene Encoding Wax Ester Synthase vol.26, pp.2, 2011, https://doi.org/10.4014/jmb.1507.07029
- Triclosan Resistome from Metagenome Reveals Diverse Enoyl Acyl Carrier Protein Reductases and Selective Enrichment of Triclosan Resistance Genes vol.6, pp.None, 2016, https://doi.org/10.1038/srep32322
- Next-generation approaches to understand and combat the antibiotic resistome vol.15, pp.7, 2011, https://doi.org/10.1038/nrmicro.2017.28
- Bacterial Hormone-Sensitive Lipases (bHSLs): Emerging Enzymes for Biotechnological Applications vol.27, pp.11, 2011, https://doi.org/10.4014/jmb.1708.08004
- Recent Advances in Function-based Metagenomic Screening vol.16, pp.6, 2018, https://doi.org/10.1016/j.gpb.2018.01.002
- Chloramphenicol Derivatives with Antibacterial Activity Identified by Functional Metagenomics vol.81, pp.6, 2011, https://doi.org/10.1021/acs.jnatprod.7b00903
- Crystal structure of chloramphenicol-metabolizing enzyme EstDL136 from a metagenome vol.14, pp.1, 2011, https://doi.org/10.1371/journal.pone.0210298
- The Mandate for a Global “One Health” Approach to Antimicrobial Resistance Surveillance vol.100, pp.2, 2019, https://doi.org/10.4269/ajtmh.18-0973
- Biodegradation of antibiotics: The new resistance determinants – part I vol.54, pp.None, 2011, https://doi.org/10.1016/j.nbt.2019.08.002
- Improvements in Extraction Methods of High-molecular-weight DNA from Soils by Modifying Cell Lysis Conditions and Reducing Adsorption of DNA onto Soil Particles vol.36, pp.3, 2011, https://doi.org/10.1264/jsme2.me21017
- Characterization of florfenicol resistance genes in the coagulase-negative Staphylococcus (CoNS) isolates and genomic features of a multidrug-resistant Staphylococcus lentus strain H29 vol.10, pp.1, 2011, https://doi.org/10.1186/s13756-020-00869-5
- New insights into thiamphenicol biodegradation mechanism by Sphingomonas sp. CL5.1 deciphered through metabolic and proteomic analysis vol.426, pp.None, 2022, https://doi.org/10.1016/j.jhazmat.2021.128101