DOI QR코드

DOI QR Code

Cytotoxicity of Listeriolysin O Produced by Membrane-Encapsulated Bacillus subtilis on Leukemia Cells

  • Stachowiak, R. (Department of Applied Microbiology, Faculty of Biology, University of Warsaw) ;
  • Granicka, L.H. (M. Na cz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Science) ;
  • Wisniewski, J. (Department of Applied Microbiology, Faculty of Biology, University of Warsaw) ;
  • Lyzniak, M. (Medical Center of Postgraduate Education) ;
  • Kawiak, J. (M. Na cz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Science) ;
  • Bielecki, J. (Department of Applied Microbiology, Faculty of Biology, University of Warsaw)
  • Received : 2011.05.20
  • Accepted : 2011.07.13
  • Published : 2011.11.28

Abstract

Encapsulation of biological material in the permiselective membrane allows to construct a system separating cells from their products, which may find biotechnological as well as biomedical applications in biological processes regulation. Application of a permiselective membrane allows avoiding an attack of the implanted microorganisms on the host. Our aim was to evaluate the performance of Bacillus subtilis encapsulated in an elaborate membrane system producing listeriolysin O, a cytolysin from Listeria monocytogenes, with chosen eukaryotic cells for future application in anticancer treatment. The system of encapsulating in membrane live Bacillus subtilis BR1-S secreting listeriolysin O was proven to exert the effective cytotoxic activity on eukaryotic cells. Interestingly, listeriolysin O showed selective cytotoxic activity on eukaryotic cells: more human leukemia Jurkat T cells were killed than human chronic lymphocytic B cells leukemia at similar conditions in vitro. This system of encapsulated B. subtilis, continuously releasing bacterial products, may affect selectively different types of cells and may have future application in local anticancer treatment.

Keywords

References

  1. Alouf, J. E., S. J. Billington, and B. H. Jost. 2005. Repertoire and general features of the family of cholesterol-dependent cytolysins, pp. 643-658. In J. E. Alouf and M. R. Popoff (eds.). The Comprehensive Sourcebook of Bacterial Protein Toxins, 3rd Ed. Academic Press, London; San Diego.
  2. Bielecki, J., P. Youngman, P. Connelly, and D. A. Portnoy. 1990. Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature 345: 175-176. https://doi.org/10.1038/345175a0
  3. Carrero, J. A., H. Vivanco-Cid, and E. R. Unanue. 2008. Granzymes drive a rapid listeriolysin O-induced T cell apoptosis. J. Immunol. 181: 1365-1374.
  4. Chang, T. M. and S. Prakash. 2001. Procedures for microencapsulation of enzymes, cells and genetically engineered microorganisms. Mol. Biotechnol. 17: 249-260. https://doi.org/10.1385/MB:17:3:249
  5. Charalampopoulos, D., R. Wang, S. S. Pandiella, and C. Webb. 2002. Application of cereals and cereal components in functional foods: A review. Int. J. Food Microbiol. 79: 131-141. https://doi.org/10.1016/S0168-1605(02)00187-3
  6. Gekara, N. O., N. Zietara, R. Geffers, and S. Weiss. 2010. Listeria monocytogenes induces T cell receptor unresponsiveness through pore-forming toxin listeriolysin O. J. Infect. Dis. 202: 1698-1707. https://doi.org/10.1086/657145
  7. Granicka, L. H., M. Wdowiak, A. Kosek, S. wie ewski, D. Wasilewska, E. Jankowska, A. Wery ski, and J. Kawiak. 2005. Survival analysis of Escherichia coli encapsulated in a hollow fiber membrane in vitro and in vivo: Preliminary report. Cell Transplant. 14: 323-330. https://doi.org/10.3727/000000005783983043
  8. Granicka, L. H., J. olnierowicz, D. Wasilewska, A. Wery ski, and J. Kawiak. 2010. Induced death of Escherichia coli encapsulated in a hollow fiber membrane as observed in vitro or after subcutaneous implantation. J. Microbiol. Biotechnol. 20: 224-228.
  9. Hou, R. C., M. Y. Lin, M. M. Wang, and J. T. Tzen. 2003. Increase of viability of entrapped cells of Lactobacillus delbrueckii ssp. bulgaricus in artificial sesame oil emulsions. J. Dairy Sci. 86: 424-428. https://doi.org/10.3168/jds.S0022-0302(03)73620-0
  10. Ling Lin, F., X. Zi Rong, L. Wei Fen, S. Jiang Bing, L. Ping, and H. Chun Xia. 2007. Protein secretion pathways in Bacillus subtilis: Implication for optimization of heterologous protein secretion. Biotechnol. Adv. 25: 1-12.
  11. Moslemy, P., R. J. Neufeld, and S. R. Guiot. 2002. Biodegradation of gasoline by gellan gum-encapsulated bacterial cells. Biotechnol. Bioeng. 80: 175-184. https://doi.org/10.1002/bit.10358
  12. Nijland, R. and O. P. Kuipers. 2008. Optimization of protein secretion by Bacillus subtilis. Recent Pat. Biotechnol. 2: 79-87. https://doi.org/10.2174/187220808784619694
  13. Palmer, M. 2004. Cholesterol and the activity of bacterial toxins. FEMS Microbiol. Lett. 238: 281-289. https://doi.org/10.1111/j.1574-6968.2004.tb09768.x
  14. Prakash, S. and T. M. Chang. 2000. Artificial cells microencapsulated genetically engineered E. coli DH5 cells for the lowering of plasma creatinine in-vitro and in-vivo. Artif. Cells Blood Substit. Immobil. Biotechnol. 28: 397-408. https://doi.org/10.3109/10731190009118584
  15. Prakash, S. and T. M. Chang. 2000. In vitro and in vivo uric acid lowering by artificial cells containing microencapsulated genetically engineered E. coli DH5 cells. Int. J. Artif. Organs. 23: 429-435. https://doi.org/10.1177/039139880002300704
  16. Schallmey, M., A. Singh, and O. P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17. https://doi.org/10.1139/w03-076
  17. Shah, N. P. 2000. Probiotic bacteria: Selective enumeration and survival in dairy foods. J. Dairy Sci. 83: 894-907. https://doi.org/10.3168/jds.S0022-0302(00)74953-8
  18. Smyth, C. J. and J. L. Duncan. 1978. Thiol-activated (oxygenlabile) cytolysins, pp. 129-183. In J. Jejaszewicz and T. Wadstrom (eds.). Bacterial Toxins and Cell Membranes. Academic Press Ltd, London.
  19. Sultana, K., G. Godward, N. Reynolds, R. Arumugaswamy, P. Peiris, and K. Kailasapathy. 2000. Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food Microbiol. 62: 47-55. https://doi.org/10.1016/S0168-1605(00)00380-9
  20. Vazquez-Boland, J. A., R. Stachowiak, L. Lacharme, and M. Scortti. 2005. Listeriolysin, pp. 700-716. In J. E. Alouf and M. R. Popoff (eds.). The Comprehensive Sourcebook of Bacterial Protein Toxins, 3rd Ed. Academic Press, London; San Diego.
  21. Zuber, P. and R. Losick. 1987. Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis. J. Bacteriol. 169: 2223-2230.

Cited by

  1. Cytotoxicity of Bacterial Metabolic Products, including Listeriolysin O, on Leukocyte Targets vol.2012, pp.None, 2011, https://doi.org/10.1155/2012/954375
  2. Cytotoxicity of purified listeriolysin O on mouse and human leukocytes and leukaemia cells vol.14, pp.None, 2011, https://doi.org/10.1186/1472-6750-14-77
  3. The targeting nanothin polyelectrolyte shells in system with immobilized bacterial cells for antitumor factor production vol.102, pp.8, 2011, https://doi.org/10.1002/jbm.a.34936
  4. Delivery of Chicken Egg Ovalbumin to Dendritic Cells by Listeriolysin O-Secreting Vegetative Bacillus subtilis vol.28, pp.1, 2011, https://doi.org/10.4014/jmb.1706.06057