DOI QR코드

DOI QR Code

Selenite Stress Elicits Physiological Adaptations in Bacillus sp. (Strain JS-2)

  • Dhanjal, Soniya (Environmental Biotechnology and Microbial Biochemistry Laboratory, Institute of Microbial Technology (IMTECH)) ;
  • Cameotra, Swaranjit Singh (Environmental Biotechnology and Microbial Biochemistry Laboratory, Institute of Microbial Technology (IMTECH))
  • Received : 2011.05.19
  • Accepted : 2011.07.22
  • Published : 2011.11.28

Abstract

A bacterial isolate (strain JS-2) characterized as Bacillus sp. was challenged with high concentrations of toxic selenite ions. The microbe was found to transform the toxic, soluble, colorless selenite (${SeO_3}^{2-}$) oxyions to nontoxic, insoluble, red elemental selenium ($Se^0$). This process of biotransformation was accompanied by cytoplasmic and surface accumulation of electron dense selenium ($Se^0$) granules, as revealed in electron micrographs. The cells grown in the presence of selenite oxyions secreted large quantities of extracellular polymeric substances (EPS). There were quantitative and qualitative differences in the cell wall fatty acids of the culture grown in the presence of selenite ions. The relative percentage of total saturated fatty acid and cyclic fatty acid increased significantly, whereas the amount of total unsaturated fatty acids decreased when the cells were exposed to selenite stress. All these physiological adaptive responses evidently indicate a potentially important role of cell wall fatty acids and extracellular polymeric substances in determining bacterial adaptation towards selenite-induced toxicity, which thereby explains the remarkable competitiveness and ability of this microbe to survive the environmental stress.

Keywords

References

  1. Adams, D. J. and T. M. Pickett. 1998. Microbial and cell-free selenium bioreduction in mining waters, pp. 479-499. In W. T. Frankenberger Jr. and R. A. Engberg (eds.). Environmental Chemistry of Selenium. Dekker, New York.
  2. Beech, I. B. and J. Sunner. 2004. Biocorrosion: Towards understanding interactions between biofilms and metals. Curr. Opin. Biotechnol. 15: 181-186. https://doi.org/10.1016/j.copbio.2004.05.001
  3. Burton Jr., A.G., T. H. Giddings, P. Debrine, and R. Fall. 1987. High incidence of selenite resistant bacteria from a site polluted with selenium. Appl. Environ. Microbiol. 53: 185-188.
  4. Chattopadhyay, M. K. and M. V. Jagannadham. 2007. A branched chain fatty acid promotes cold adaptation in bacteria. J. Biosci. 28: 363-364.
  5. Cowan, S. T. and K. J. Steel. 1965. Manual for the Identification of Medical Bacteria. Cambridge University Press, London.
  6. Dhanjal, S. and S. S. Cameotra. 2010. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb. Cell Fact. 9: 52. https://doi.org/10.1186/1475-2859-9-52
  7. Dungan, R. S., S. R. Yates, and W. T. Frankenberger. 2003. Transformations of selenate and selenite by Stenotrophomonas maltophilia isolated from a seleniferous agricultural drainage pond sediment. Environ. Microbiol. 5: 287-295. https://doi.org/10.1046/j.1462-2920.2003.00410.x
  8. Ehrlich, H. L. 1997. Microbes and metals. Appl. Microbiol. Biotechnol. 48: 687-692. https://doi.org/10.1007/s002530051116
  9. Fredrickson, J. K. and J. M. Zachara. 2008. Electron transfer at the microbe-mineral interface: A grand challenge in biogeochemistry. Geobiology 6: 245-253. https://doi.org/10.1111/j.1472-4669.2008.00146.x
  10. Fujita, M., M. Ike, S. Nishimoto, K. Takahashi, and M. Kashiwa. 1997. Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1. J. Ferment. Bioeng. 83: 517-522. https://doi.org/10.1016/S0922-338X(97)81130-0
  11. Gadd, G. M. 2011. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 156: 609-643.
  12. Garbisu, C., I. Alkorta, D. E. Carlson, T. Leighton, and B. B. Buchanan. 1997. Selenite bioremediation potential of indigenous microorganisms from industrial activated sludge. Microbiologia 13: 437-444.
  13. Hazel, J. R. and E. E. Williams. 1990. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res. 29: 167-227. https://doi.org/10.1016/0163-7827(90)90002-3
  14. Holden, J. F. and M. W. W. Adams. 2003. Microbe-metal interactions in marine hydrothermal environments. Curr. Opin. Chem. Biol. l7: 160-165.
  15. Holt, J. G. 1984. Bergey's Manual of Systematic Bacteriology, Vol. I and II. Williams Wilkins, Baltimore, USA.
  16. Ikram, M. and M. Faisal. 2010. Comparative assessment of selenite (SeIV) detoxification to elemental selenium (Se 0 ) by Bacillus sp. Biotechnol. Lett. 32: 1255-1259. https://doi.org/10.1007/s10529-010-0291-z
  17. Junker, F. and J. L. Ramos. 1999. Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E. J. Bacteriol. 181: 5693-5700.
  18. Kazy, S. K., P. Sar, S. P. Singh, A. K. Sen, and S. F. D'Souza. 2002. Extracellular polysaccharides of a copper-sensitive and copper-resistant Pseudomonas aeruginosa strain: Synthesis, chemical nature and copper binding. World J. Microbiol. Biotechnol. 18: 583-588. https://doi.org/10.1023/A:1016354713289
  19. Klonowska, A., T. Heulin, and A. Vermeglios. 2005. Selenite and tellurite reduction by Shewanella oneidensis. Appl. Environ. Microbiol. 71: 5607-5609. https://doi.org/10.1128/AEM.71.9.5607-5609.2005
  20. Lee, J.-H., J. Han, H. Choi, and H.-G. Hur. 2007. Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella sp. HN-41. Chemosphere 68: 1898-1905. https://doi.org/10.1016/j.chemosphere.2007.02.062
  21. Liermann, L. J., E. M. Hausrath, A. D. Anbarc, and S. L. Brantleyab. 2007. Assimilatory and dissimilatory processes of microorganisms affecting metals in the environment. J. Anal. At. Spectrom. 22: 867-877. https://doi.org/10.1039/b705383e
  22. Lortie, L., W. D. Gould, S. Rajan, R. G. L. Meeready, and K. J Cheng. 1992. Reduction of elemental selenium by a Pseudomonas stutzeri isolate. Appl. Environ. Microbiol. 58: 4042-4044.
  23. Losi, M. and W. T. Frankenberger Jr. 1997. Reduction of selenium by Enterobacter cloacae SLD1a-1: Isolation and growth of bacteria and its expulsion of selenium particles. Appl. Environ. Microbiol. 63: 3079-3084.
  24. Maiers, D. T., P. L. Wichlacz, D. L.Thompson, and D. F. Bruhn. 1988. Selenate reduction by bacteria from a selenium-rich environment. Appl. Environ. Microbiol. 54: 2591-2593.
  25. Mejáre, M. and L. Bulow. 2001. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 19: 67-73.
  26. Mertens, J., S. A. Wakelin, K. Broos, M. J. Mclaughlin, and E. Smolders. 2010. Extent of copper tolerance and consequences for functional stability of the ammonia-oxidizing community in long-term copper contaminated soils. Environ. Toxicol. Chem. 29: 27-37. https://doi.org/10.1002/etc.16
  27. Molaei, S., S. Yaghmaei, and Z. Ghobadi. 2011. A study of Acidithiobacillus ferrooxidans DSMZ 583 adaptation to heavy metals. Iranian J. Biotechnol. 9: 133-144.
  28. Oremland, R. S., J. Switzer-Blum, A. B. Bindi, P. R. Dowdle, M. Herbel, and J. F. Stolz. 1999. Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria. Appl. Environ. Microbiol. 65: 4385-4392.
  29. Ozturk, S. and B. Aslim. 2008. Relationship between chromium(VI) resistance and extracellular polymeric substances (EPS) concentration by some cyanobacterial isolates. Environ. Sci. Pollut. Res. Int. 15: 478-480. https://doi.org/10.1007/s11356-008-0027-y
  30. Pal, A. and A. K. Paul. 2008. Microbial extracellular polymeric substances: Central elements in heavy metal bioremediation. Indian J. Microbiol. 48: 49-64. https://doi.org/10.1007/s12088-008-0006-5
  31. Pennanen, T., A. Frostegard, H. Fritze, and E. Baath. 1996. Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Appl. Environ. Microbiol. 62: 420-428.
  32. Rathgeber, C., N. Yurkova, E. Stackebrandt, J. Thomas Beatty, and V. Yurkov. 2002. Isolation of tellurite- and selenite-resistant bacteria from hydrothermal vents of the Juan de Fuca ridge in the Pacific Ocean. Appl. Environ. Microbiol. 68: 4613-4622. https://doi.org/10.1128/AEM.68.9.4613-4622.2002
  33. Rayman, M. P. 2000. The importance of selenium to human health. Lancet 356: 233-241. https://doi.org/10.1016/S0140-6736(00)02490-9
  34. Razak, A. A., S. E. Ramadan, and K. el-Zawahry. 1990. Mobilization of selenium by a selenium-dependent bacterium. Biol. Trace Elem. Res. 25: 193-199. https://doi.org/10.1007/BF02990414
  35. Roux, M., S. Geraldine, P. P. Isabelle, M. Fontecave, and C. J. Coves. 2001. Mobilization of selenite by Ralstonia metallidurans CH34. Appl. Environ. Microbiol. 67: 769-773. https://doi.org/10.1128/AEM.67.2.769-773.2001
  36. Sharma, N. K., J. Pandey, N. Gupta, and R. K. Jain. 2007. Growth and physiological response of Arthrobacter protophormiae RKJ100 toward higher concentrations of o-nitrobenzoate and phydroxybenzoate. FEMS Microbiol. Lett. 271: 65-70. https://doi.org/10.1111/j.1574-6968.2007.00697.x
  37. Shnyukova, E. I. 2005. Accumulation of metal ions by exopolysaccharides of Nostoc linckia (Roth) Born. et Flach. Int. J. Algae 7: 101-107.
  38. Turlo, J., B. Gutkowska, F. Herold, M. Dawidowski, T. S owi ski, and A. Zobel. 2010. Relationship between selenium accumulation and mycelial cell composition in Lentinula edodes (Berk.) cultures. J. Toxicol. Environ. Health A 73: 1211-1219. https://doi.org/10.1080/15287394.2010.492005
  39. Wan, H. S., O. J. Hao, and H. Kim. 2001. Environmental factors affecting selenite reduction by a mixed culture. J. Environ. Eng. 127: 175-178. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:2(175)
  40. Xu, C. L., Y. Z. Wang, M. L. Jin, and X. Q. Yang. 2009. Preparation, characterization and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206. Biores. Technol. 100: 2095-2097. https://doi.org/10.1016/j.biortech.2008.10.037

Cited by

  1. Extracellular Polymeric Substances Govern the Surface Charge of Biogenic Elemental Selenium Nanoparticles vol.49, pp.3, 2011, https://doi.org/10.1021/es5043063
  2. Aspects of a Distinct Cytotoxicity of Selenium Salts and Organic Selenides in Living Cells with Possible Implications for Drug Design vol.20, pp.8, 2011, https://doi.org/10.3390/molecules200813894
  3. Reduction of selenite to elemental selenium nanoparticles by activated sludge vol.23, pp.2, 2011, https://doi.org/10.1007/s11356-015-5138-7
  4. Proteomic profiling of Bacillus licheniformis reveals a stress response mechanism in the synthesis of extracellular polymeric flocculants vol.113, pp.4, 2011, https://doi.org/10.1002/bit.25838
  5. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum vol.34, pp.None, 2011, https://doi.org/10.1016/j.nbt.2016.10.002
  6. Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation vol.15, pp.None, 2017, https://doi.org/10.1186/s12951-017-0276-3
  7. Isolation of selenium‐resistant bacteria and advancement under enrichment conditions for selected probiotic Bacillus subtilis (BSN313) vol.44, pp.6, 2020, https://doi.org/10.1111/jfbc.13227