References
- Adams, D. J. and T. M. Pickett. 1998. Microbial and cell-free selenium bioreduction in mining waters, pp. 479-499. In W. T. Frankenberger Jr. and R. A. Engberg (eds.). Environmental Chemistry of Selenium. Dekker, New York.
- Beech, I. B. and J. Sunner. 2004. Biocorrosion: Towards understanding interactions between biofilms and metals. Curr. Opin. Biotechnol. 15: 181-186. https://doi.org/10.1016/j.copbio.2004.05.001
- Burton Jr., A.G., T. H. Giddings, P. Debrine, and R. Fall. 1987. High incidence of selenite resistant bacteria from a site polluted with selenium. Appl. Environ. Microbiol. 53: 185-188.
- Chattopadhyay, M. K. and M. V. Jagannadham. 2007. A branched chain fatty acid promotes cold adaptation in bacteria. J. Biosci. 28: 363-364.
- Cowan, S. T. and K. J. Steel. 1965. Manual for the Identification of Medical Bacteria. Cambridge University Press, London.
- Dhanjal, S. and S. S. Cameotra. 2010. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb. Cell Fact. 9: 52. https://doi.org/10.1186/1475-2859-9-52
- Dungan, R. S., S. R. Yates, and W. T. Frankenberger. 2003. Transformations of selenate and selenite by Stenotrophomonas maltophilia isolated from a seleniferous agricultural drainage pond sediment. Environ. Microbiol. 5: 287-295. https://doi.org/10.1046/j.1462-2920.2003.00410.x
- Ehrlich, H. L. 1997. Microbes and metals. Appl. Microbiol. Biotechnol. 48: 687-692. https://doi.org/10.1007/s002530051116
- Fredrickson, J. K. and J. M. Zachara. 2008. Electron transfer at the microbe-mineral interface: A grand challenge in biogeochemistry. Geobiology 6: 245-253. https://doi.org/10.1111/j.1472-4669.2008.00146.x
- Fujita, M., M. Ike, S. Nishimoto, K. Takahashi, and M. Kashiwa. 1997. Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1. J. Ferment. Bioeng. 83: 517-522. https://doi.org/10.1016/S0922-338X(97)81130-0
- Gadd, G. M. 2011. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 156: 609-643.
- Garbisu, C., I. Alkorta, D. E. Carlson, T. Leighton, and B. B. Buchanan. 1997. Selenite bioremediation potential of indigenous microorganisms from industrial activated sludge. Microbiologia 13: 437-444.
- Hazel, J. R. and E. E. Williams. 1990. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res. 29: 167-227. https://doi.org/10.1016/0163-7827(90)90002-3
- Holden, J. F. and M. W. W. Adams. 2003. Microbe-metal interactions in marine hydrothermal environments. Curr. Opin. Chem. Biol. l7: 160-165.
- Holt, J. G. 1984. Bergey's Manual of Systematic Bacteriology, Vol. I and II. Williams Wilkins, Baltimore, USA.
- Ikram, M. and M. Faisal. 2010. Comparative assessment of selenite (SeIV) detoxification to elemental selenium (Se 0 ) by Bacillus sp. Biotechnol. Lett. 32: 1255-1259. https://doi.org/10.1007/s10529-010-0291-z
- Junker, F. and J. L. Ramos. 1999. Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E. J. Bacteriol. 181: 5693-5700.
- Kazy, S. K., P. Sar, S. P. Singh, A. K. Sen, and S. F. D'Souza. 2002. Extracellular polysaccharides of a copper-sensitive and copper-resistant Pseudomonas aeruginosa strain: Synthesis, chemical nature and copper binding. World J. Microbiol. Biotechnol. 18: 583-588. https://doi.org/10.1023/A:1016354713289
- Klonowska, A., T. Heulin, and A. Vermeglios. 2005. Selenite and tellurite reduction by Shewanella oneidensis. Appl. Environ. Microbiol. 71: 5607-5609. https://doi.org/10.1128/AEM.71.9.5607-5609.2005
- Lee, J.-H., J. Han, H. Choi, and H.-G. Hur. 2007. Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella sp. HN-41. Chemosphere 68: 1898-1905. https://doi.org/10.1016/j.chemosphere.2007.02.062
- Liermann, L. J., E. M. Hausrath, A. D. Anbarc, and S. L. Brantleyab. 2007. Assimilatory and dissimilatory processes of microorganisms affecting metals in the environment. J. Anal. At. Spectrom. 22: 867-877. https://doi.org/10.1039/b705383e
- Lortie, L., W. D. Gould, S. Rajan, R. G. L. Meeready, and K. J Cheng. 1992. Reduction of elemental selenium by a Pseudomonas stutzeri isolate. Appl. Environ. Microbiol. 58: 4042-4044.
- Losi, M. and W. T. Frankenberger Jr. 1997. Reduction of selenium by Enterobacter cloacae SLD1a-1: Isolation and growth of bacteria and its expulsion of selenium particles. Appl. Environ. Microbiol. 63: 3079-3084.
- Maiers, D. T., P. L. Wichlacz, D. L.Thompson, and D. F. Bruhn. 1988. Selenate reduction by bacteria from a selenium-rich environment. Appl. Environ. Microbiol. 54: 2591-2593.
- Mejáre, M. and L. Bulow. 2001. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 19: 67-73.
- Mertens, J., S. A. Wakelin, K. Broos, M. J. Mclaughlin, and E. Smolders. 2010. Extent of copper tolerance and consequences for functional stability of the ammonia-oxidizing community in long-term copper contaminated soils. Environ. Toxicol. Chem. 29: 27-37. https://doi.org/10.1002/etc.16
- Molaei, S., S. Yaghmaei, and Z. Ghobadi. 2011. A study of Acidithiobacillus ferrooxidans DSMZ 583 adaptation to heavy metals. Iranian J. Biotechnol. 9: 133-144.
- Oremland, R. S., J. Switzer-Blum, A. B. Bindi, P. R. Dowdle, M. Herbel, and J. F. Stolz. 1999. Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria. Appl. Environ. Microbiol. 65: 4385-4392.
- Ozturk, S. and B. Aslim. 2008. Relationship between chromium(VI) resistance and extracellular polymeric substances (EPS) concentration by some cyanobacterial isolates. Environ. Sci. Pollut. Res. Int. 15: 478-480. https://doi.org/10.1007/s11356-008-0027-y
- Pal, A. and A. K. Paul. 2008. Microbial extracellular polymeric substances: Central elements in heavy metal bioremediation. Indian J. Microbiol. 48: 49-64. https://doi.org/10.1007/s12088-008-0006-5
- Pennanen, T., A. Frostegard, H. Fritze, and E. Baath. 1996. Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Appl. Environ. Microbiol. 62: 420-428.
- Rathgeber, C., N. Yurkova, E. Stackebrandt, J. Thomas Beatty, and V. Yurkov. 2002. Isolation of tellurite- and selenite-resistant bacteria from hydrothermal vents of the Juan de Fuca ridge in the Pacific Ocean. Appl. Environ. Microbiol. 68: 4613-4622. https://doi.org/10.1128/AEM.68.9.4613-4622.2002
- Rayman, M. P. 2000. The importance of selenium to human health. Lancet 356: 233-241. https://doi.org/10.1016/S0140-6736(00)02490-9
- Razak, A. A., S. E. Ramadan, and K. el-Zawahry. 1990. Mobilization of selenium by a selenium-dependent bacterium. Biol. Trace Elem. Res. 25: 193-199. https://doi.org/10.1007/BF02990414
- Roux, M., S. Geraldine, P. P. Isabelle, M. Fontecave, and C. J. Coves. 2001. Mobilization of selenite by Ralstonia metallidurans CH34. Appl. Environ. Microbiol. 67: 769-773. https://doi.org/10.1128/AEM.67.2.769-773.2001
- Sharma, N. K., J. Pandey, N. Gupta, and R. K. Jain. 2007. Growth and physiological response of Arthrobacter protophormiae RKJ100 toward higher concentrations of o-nitrobenzoate and phydroxybenzoate. FEMS Microbiol. Lett. 271: 65-70. https://doi.org/10.1111/j.1574-6968.2007.00697.x
- Shnyukova, E. I. 2005. Accumulation of metal ions by exopolysaccharides of Nostoc linckia (Roth) Born. et Flach. Int. J. Algae 7: 101-107.
- Turlo, J., B. Gutkowska, F. Herold, M. Dawidowski, T. S owi ski, and A. Zobel. 2010. Relationship between selenium accumulation and mycelial cell composition in Lentinula edodes (Berk.) cultures. J. Toxicol. Environ. Health A 73: 1211-1219. https://doi.org/10.1080/15287394.2010.492005
- Wan, H. S., O. J. Hao, and H. Kim. 2001. Environmental factors affecting selenite reduction by a mixed culture. J. Environ. Eng. 127: 175-178. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:2(175)
- Xu, C. L., Y. Z. Wang, M. L. Jin, and X. Q. Yang. 2009. Preparation, characterization and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206. Biores. Technol. 100: 2095-2097. https://doi.org/10.1016/j.biortech.2008.10.037
Cited by
- Extracellular Polymeric Substances Govern the Surface Charge of Biogenic Elemental Selenium Nanoparticles vol.49, pp.3, 2011, https://doi.org/10.1021/es5043063
- Aspects of a Distinct Cytotoxicity of Selenium Salts and Organic Selenides in Living Cells with Possible Implications for Drug Design vol.20, pp.8, 2011, https://doi.org/10.3390/molecules200813894
- Reduction of selenite to elemental selenium nanoparticles by activated sludge vol.23, pp.2, 2011, https://doi.org/10.1007/s11356-015-5138-7
- Proteomic profiling of Bacillus licheniformis reveals a stress response mechanism in the synthesis of extracellular polymeric flocculants vol.113, pp.4, 2011, https://doi.org/10.1002/bit.25838
- Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum vol.34, pp.None, 2011, https://doi.org/10.1016/j.nbt.2016.10.002
- Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation vol.15, pp.None, 2017, https://doi.org/10.1186/s12951-017-0276-3
- Isolation of selenium‐resistant bacteria and advancement under enrichment conditions for selected probiotic Bacillus subtilis (BSN313) vol.44, pp.6, 2020, https://doi.org/10.1111/jfbc.13227