DOI QR코드

DOI QR Code

Evaluation of the Coal-Degrading Ability of Rhizobium and Chelatococcus Strains Isolated from the Formation Water of an Indian Coal Bed

  • Received : 2011.06.03
  • Accepted : 2011.07.19
  • Published : 2011.11.28

Abstract

The rise in global energy demand has prompted researches on developing strategies for transforming coal into a cleaner fuel. This requires isolation of microbes with the capability to degrade complex coal into simpler substrates to support methanogenesis in the coal beds. In this study, aerobic bacteria were isolated from an Indian coal bed that can solubilize and utilize coal as the sole source of carbon. The six bacterial isolates capable of growing on coal agar medium were identified on the basis of their 16S rRNA gene sequences, which clustered into two groups; Group I isolates belonged to the genus Rhizobium, whereas Group II isolates were identified as Chelatococcus species. Out of the 4 methods of whole genome fingerprinting (ERIC-PCR, REP-PCR, BOX-PCR, and RAPD), REP-PCR showed maximum differentiation among strains within each group. Only Chelatococcus strains showed the ability to solubilize and utilize coal as the sole source of carbon. On the basis of 16S rRNA gene sequence and the ability to utilize different carbon sources, the Chelatococcus strains showed maximum similarity to C. daeguensis. This is the first report showing occurrence of Rhizobium and Chelatococcus strains in an Indian coal bed, and the ability of Chelatococcus isolates to solubilize and utilize coal as a sole source of carbon for their growth.

Keywords

References

  1. Altschul, S. F., T. L. Madden, A. A Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Castaldini, M., A. Turrini, C. Sbrana, A. Benedetti, M. Marchionni, S. Mocali, et al. 2005. Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl. Environ. Microbiol. 7: 6719-6729.
  3. Catcheside, D. A. E. and J. P. Ralph. 1999. Biological processing of coal. Appl. Microbiol. Biotechnol. 52: 16-24. https://doi.org/10.1007/s002530051482
  4. Chowdhury, S. P., S. Khanna, S. C. Verma, and A. K. Tripathi. 2004. Molecular diversity of tannic acid degrading bacteria isolated from tannery soil. J. Appl. Microbiol. 97: 1210-1219. https://doi.org/10.1111/j.1365-2672.2004.02426.x
  5. Cohen, M. S. and P. D. Gabriele. 1982. Degradation of coal by the fungi Polyporus versicolor and Poria monticola. Appl. Environ. Microbiol. 44: 23-30.
  6. Crawford, D. L. and R. K. Gupta. 1991. Characterization of extracellular bacterial enzymes which depolymerize a soluble lignite coal polymer. Fuel 70: 577-580. https://doi.org/10.1016/0016-2361(91)90168-A
  7. Crawford, D. L. and R. K. Gupta. 1993. Microbial depolymerization of coal, pp. 65-92. In D. L. Crawford (ed.). Microbial Transformations of Low Rank Coals. CRC, Boca Raton, Fla.
  8. Deobald, L. A. and D. L. Crawford. 1987. Activities of cellulase and other extracellular enzymes during lignin solubilization by Streptomyces viridosporus. Appl. Environ. Microbiol. 26: 158- 163.
  9. Durie, R. A., B. M. Lynch, and S. Strenhel. 1960. Comparative studies of brown coal and lignin. Austral. J. Chem. 13: 156-168. https://doi.org/10.1071/CH9600156
  10. Egli, T. W. and G. Auling. 2005. Genus Chelatococcus, pp. 433-437. In D. J. Brenner, N. R. Krieg, G. M. Garrity, and J. T. Stanley (eds.). Bergey's Manual of Systematic Bacteriology, Part C, Vol.2, 2nd Ed. Springer, New York.
  11. Fakoussa, R. M. 1981. Kohle als Substrat für Mikroorganismen: Untersuchungen zur mikrobiellen Umsetzung nativer Steinkohle. Ph.D. Thesis, University of Bonn, Germany. Translated as "Coal as a substrate for microorganisms: Investigations of the microbial decomposition of untreated hard coal". Prepared for U.S. Department of Energy, Pittsburgh Energy Technology Center, 1987.
  12. Fakoussa, R. M. 1988. Production of water-soluble coalsubstances by partial microbial liquefaction of untreated hard coal. Res. Conserv. Recycl. 1: 251-260. https://doi.org/10.1016/0921-3449(88)90020-1
  13. Fakoussa, R. M. 1990. Microbiological treatment of German hard coal, pp. 95-107. In D. L. Wise (ed.). Bioprocessing and Biotreatment of Coal. Marcel Dekker, New York.
  14. Fakoussa, R. M. and M. Hofrichter. 1999. Biotechnology and microbiology of coal degradation. Appl. Environ. Microbiol. 52: 25-40.
  15. Gokcay, C. F., N. Kolankaya, and F. B. Dilek. 2001. Microbial solubilization of lignites. Fuel 80: 1421-1433. https://doi.org/10.1016/S0016-2361(01)00010-2
  16. Grifoni, A., M. Bazzicalupo, C. D. Serio, S. Fancelli, and R. Fani. 1995. Identification of Azospirillum strains by restriction fragment length polymorphism of the 16S rDNA and of the histidine operon. FEMS Microbiol. Lett. 127: 85-91. https://doi.org/10.1111/j.1574-6968.1995.tb07454.x
  17. Hatcher, P. G. 1990. Chemical structural models for coalified wood (vitrinite) in low rank coal. Org. Geochem. 16: 959-970. https://doi.org/10.1016/0146-6380(90)90132-J
  18. Hayatsu, R., R. E. Winans, R. L. McBeth, R. G. Scott, L. P. Moore, and H. Studier. 1979. Lignin-like polymers in coal. Nature 278: 41-43. https://doi.org/10.1038/278041a0
  19. Hayward, T. 2010. BP Statistical Review of World Energy. Accessible at http://www.bp.com/statisticalreview.
  20. Hofrichter, M. and R. M. Fakoussa. 2005. Microbial degradation and modification of coal. Biopolymers Online. doi:10/002/ 3527600035.bpol1014.
  21. Hofrichter, M. and W. Fritsch. 1996. Depolymerization of lowrank coal by extracellular fungal enzyme systems. I. Screening for low-rank-coal-depolymerizing activities. Appl. Microbiol. Biotechnol. 46: 220-225. https://doi.org/10.1007/s002530050808
  22. Kitamura, K., N. Ohmura, and H. Saiki. 1993. Isolation of coal solubilizing microorganisms and utilization of the solubilized product. Appl. Biochem. Biotechnol. 38: 1-13. https://doi.org/10.1007/BF02916408
  23. Li, D., P. Hendry, and M. Faiz. 2008. A survey of the microbial populations in some Australian coal bed methane reservoirs. Int. J. Coal Geol. 76: 14-24. https://doi.org/10.1016/j.coal.2008.04.007
  24. Liang, W. Z., L. X. Qian, Z. L. Ge, S. F. Chang, and S. Y. Hui. 2007. A study on polysaccharide producing bacterial strain isolated from produced water in Karamay and polysaccharides produced thereby. Oilfield Chem. 24: 163-166.
  25. Louws, F. J., D. W. Fulbright, C. T. Stepens, and F. J. De Bruijn. 1994. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl. Environ. Microbiol. 60: 2286-2295.
  26. Lumpkin, R. E. 1988. Recent progress in the direct liquification of coal. Science 23: 873-877.
  27. Panday, D. and S. K. Das. 2010. Chelatococcus sambhunathii sp. nov., a moderately thermophilic alphaproteobacterium isolated from hot spring sediment. Int. J. Syst. Evol. Microbiol. 60: 861-865. https://doi.org/10.1099/ijs.0.013466-0
  28. Penner, T. J., J. M. Foght, and K. Budwill. 2010. Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures. Int. J. Coal Geol. 82: 81-93. https://doi.org/10.1016/j.coal.2010.02.002
  29. Pokorny, R., P. Olejnikova, M. Balog, P. Zifcak, U. Holker, M. Janssen, et al. 2005. Characterization of microorganisms isolated from lignite excavated from the Záhorie coal mine (southwestern Slovakia). Res. Microbiol. 156: 932-943. https://doi.org/10.1016/j.resmic.2005.04.010
  30. Quigley, D. R., C. R. Breckenridge, and P. R. Dugan.1989. Effects of multivalent cations on low-rank coal solubilities in alkaline solutions and microbial cultures. Energy Fuels 3: 571-574. https://doi.org/10.1021/ef00017a007
  31. Ron, E. Z. and E. Rosenberg. 2002. Biosurfactant and oil bioremediation. Curr. Opin. Microbiol. 13: 249-252.
  32. Scott, C. D., C. A. Woodward, and T. C. Scott. 1994. Use of chemically modified enzymes in organic solvents for conversion of coal to liquids. Catal. Today 19: 381-394. https://doi.org/10.1016/0920-5861(94)87005-5
  33. Singh, M., A. K. Tripathi, and W. Klingmuller. 1989. Identification of a regulatory nifA type gene and physical mapping of cloned new nif region of Azospirilum brasilense. Mol. Gen. Genet. 291: 235-240.
  34. Swiecicka, I. 2001. Protein profile and biochemical properties of Bacillus circulans isolated from intestines of small free-living animals in Poland. Folia Microbiol. 46: 165-171. https://doi.org/10.1007/BF02873598
  35. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  36. Tripathi, A. K., S. C. Verma, and E. Z. Ron. 2002. Molecular characterization of a salt tolerant bacterial community in the rice rhizosphere. Res. Microbiol. 153: 579-584. https://doi.org/10.1016/S0923-2508(02)01371-2
  37. Willmann, G. and R. M. Fakoussa. 1997. Extracellular oxidative enzymes of coal-attacking fungi. Fuel Proc. Technol. 52: 27- 41. https://doi.org/10.1016/S0378-3820(97)00013-1
  38. Yoon, J. H., S. J. Kang, W. T. Im, S. T. Lee, and T. K. Oh. 2008. Chelatococcus daeguensis sp. nov., isolated from wastewater of a textile dye works, and emended description of the genus Chelatococcus. Int. J. Syst. Evol. Microbiol. 58: 2224-2228. https://doi.org/10.1099/ijs.0.65291-0

Cited by

  1. Advances in the biological treatment of coal for synthetic natural gas and chemicals vol.33, pp.10, 2011, https://doi.org/10.1007/s11814-016-0225-0
  2. Diverse Bacteria with Lignin Degrading Potentials Isolated from Two Ranks of Coal vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.01428
  3. Differentiation of Clavibacter michiganensis subsp. sepedonicus using PCR melting profile and variable number of tandem repeat methods vol.68, pp.1, 2019, https://doi.org/10.1111/lam.13081