익산 미륵사지석탑 복원을 위한 대체석의 동질성 검토

Homogeneity Investigation of Replace Stone for Restoration of the Mireuksaji Stone Pagoda in Iksan, Korea

  • 김사덕 (국립문화재연구소 보존과학센터) ;
  • 이정은 (공주대학교 문화재보존과학과) ;
  • 이동식 (국립문화재연구소 미륵사지석탑보수정비사업단) ;
  • 이찬희 (공주대학교 문화재보존과학과)
  • Kim, Sa-Dug (Conservation Science Center, National Research Institute of Cultural Heritage) ;
  • Yi, Jeong-Eun (Department of Cultural Heritage Conservation Science, Kongju National University) ;
  • Lee, Dong-Sik (Mireuksaji Stone Pagoda Conservation Team, National Research Institute of Cultural Heritage) ;
  • Lee, Chan-Hee (Department of Cultural Heritage Conservation Science, Kongju National University)
  • 투고 : 2011.04.25
  • 심사 : 2011.05.27
  • 발행 : 2011.06.20

초록

익산 미륵사지 석탑은 백제 무왕대(639년)에 기초부가 조성되면서 창건된 것으로 알려져 왔다. 석탑의 주요 부재는 중생대 쥐라기에 생성된 미륵산의 중조립질 회백색 흑운모화강암으로서 조암광물은 석영, 장석, 흑운모, 백운모와 인회석 및 갈염석 등으로 구성되어 있다. 대부분의 부재는 비교적 강한 물성을 가지고 있으나 장기간 풍화를 거치면서 전체적인 내구성은 중간풍화(MW: $883kgf/cm^3$ 정도까지 약화되었다. 이 과정에서 부재의 강도에 영향을 주는 휨, 전단 및 압축력의 저하에 따라 절단(31%), 결실(57%), 균열(44%) 등의 손상이 발생하였다. 원부재는 보존처리를 통해 재사용율을 약 74%까지 높일 수 있으며, 일부 결실과 절단된 부재를 신석재로 성형할 부재가 약 55개 정도이다. 재사용이 거의 불가능한 26%의 외면석과 적심석 일부는 탑의 구조적 안정성을 유지하기 위해 신석재로의 대체가 불가피하다. 따라서 익산지역의 채석장을 중심으로 석탑과 동일한 암석을 탐색한 결과, 황등지역의 석재가 미륵사지 석탑의 원부재와 가장 유사하고 안정적인 물성을 보였다.

The Mireuksaji stone pagoda was built foundation in the reign of King Moo (AD 639) in the Baekje Kingdom of ancient Korea. The stone properties of the pagoda were quarried from Mountain Mireuk, which are medium to coarse-grained light gray biotite granite formed during the Jurassic, and are composed of quartz, feldspar, biotite, muscovite, apatite and allanite. It was strong relatively but became weak from prolonged weathering, and as a result its durability fell to $883kgf/cm^3$ (moderate weathering degree). In the process, cut-off (31%), deletion (57%) and crack (44%) occurred in foundation materials by the influence of bending, shear and compressive force. Hereat, the original materials were treated through a preservation process. As a result, approximately 74% of original materials have been able to be reused, inclusive of 55 materials that were to be partially replaced by new stones. On the other hand, it is inevitable that the other 26% including exterior stones and support-based stones have to be partially replaced by new stones. It implies that there is a need to find stones that are identical or similar to those of the pagoda. Consequently, a lithological study was conducted on stones in quarries located in Iksan and an investigation was made into their properties. The results showed that stones in the Hwangdeung area were most similar to those of the pagoda mineralogically and their properties were most stable.

키워드

참고문헌

  1. 국립문화재연구소, "미륵사지석탑 사리장엄". p13, (2009).
  2. 전라북도, "익산 미륵사지 석탑 구조안전진단". 한국건설안전기술원, p164-207, (1998).
  3. 이찬희, 김영택, 이명성, "부여 정림사지 오층석탑 구성암석의 원산지 추정". 지질학회지, 43, p183-196, (2007).
  4. 양희제, 이찬희, 최석원, 이명성, "익산 미륵사지석탑 구성 부재의 암석학적 특징과 석재의 원산지 해석". 지질학회지, 42, p293-306, (2006).
  5. 이미혜, 이찬희, "보령 성주사지 오층석탑 석재의 암석학적 특징과 원산지 및 운반경로 해석". 지질학회지, 45, p725-739, (2009).
  6. Lee, C.H., Kim, J. and Lee, M.S., "Petrography and provenance interpretation of the stone moulds for Bronze daggers from the Galdong Prehistoric site, Republic of Korea". Archaeometry, 52, p31-44, (2010). https://doi.org/10.1111/j.1475-4754.2009.00460.x
  7. 국립문화재연구소, "미륵사지석탑 해체조사보고서 II ". p204-217, (2004).
  8. 홍만섭, 김영원, "한국지질도 삼례도폭 1:50,000 및 설명서". 국립지질조사소, 32.
  9. 국립문화재연구소, "미륵사지석탑 해체조사보고서 II ". p201-202, (2004).
  10. 익산시, "폐석산의 친환경 복구를 위한 연구". p91, (2010).
  11. Nockolds, S.R. and Allen, R., "Average chemical compositions of some igneous rocks". Geological Society of American Bulletin, 65, p1007-1032, (1954). https://doi.org/10.1130/0016-7606(1954)65[1007:ACCOSI]2.0.CO;2
  12. Taylor A. B. and Velbel M. A., "Geochemical mass balance and weathering rates in forested watersheds of the southern Blue Ridge II . Effects of botanical uptake terms". Geoderma, 51, p29-50, (1991). https://doi.org/10.1016/0016-7061(91)90065-2
  13. Nesbitt H.W. and Young, G.M., "Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations". Geochemica et Cosmochemica Acta, 48, p1523-1534, (1984). https://doi.org/10.1016/0016-7037(84)90408-3
  14. Hanson, G.N., "Rare earth elements in petrogenetic studies of igneous systems". Ann. Rev. Earth Planet. Sci., 8, p371-406, (1980). https://doi.org/10.1146/annurev.ea.08.050180.002103
  15. Govindaraju, K., "Compilation of working values and samples description for 272 geostandards". Geostandards Newsletter, 13, p1-113, (1989).
  16. Taylor, S.R. and Mclennan, S.M., "The continental crust: Its composition and evolution". Blackwell, Oxford, p312, (1985).
  17. Pearce, J., "Role of sub-continental lithosphere in magma genesis at active continental margines". In Hawkesworth, C. and Norry, M. (Eds), Continental basalts and mantle xenolith, Shiva, p230-249, (1983).