DOI QR코드

DOI QR Code

The Effects of Reaction Conditions and NOM on Persulfate Oxidation of RDX

Persulfate에 의한 RDX 산화시 반응조건과 NOM의 영향

  • Wu, Dabo (Environmental Business Division, H-Plus Eco Ltd.) ;
  • Bae, Bum-Han (Department of Civil & Environmental Engineering, Kyungwon University)
  • 무대박 (에이치플러스에코 환경사업부문) ;
  • 배범한 (경원대학교 토목환경공학과)
  • Received : 2011.06.23
  • Accepted : 2011.10.26
  • Published : 2011.10.31

Abstract

In this experiment, persulfate, a strong oxidant for ISCO (In-Situ Chemical Oxidation) was used to degraded RDX in artificial ground water at ambient temperature. Results of RDX degradation by persulfate in a batch reactor showed that the oxidation reaction was pseudo first order with estimated Ea (activation energy) of $1.14{\times}10^2kJ/mol$ and the rate was increased with the increase of reaction temperature. The oxidation of RDX by persulfate increased slightly with the increase of initial solution pH from 4 to 8. The RDX oxidation rate increased 13 times at pH 10 compared with that at pH 4, however, alkaline hydrolysis was found to be the main reaction of RDX degradation rather than oxidation. The study also showed that the oxidation rate of RDX by persulfate was linearly dependent upon the molar ratios of persulfate to RDX from 5 : 1 up to 100 : 1, with a proportion constant of $4{\times}10^{-4}$ ($min^{-1}$/molar ratio) at $70^{\circ}C$. While NOM (Natural Organic Matter) exerted negative effects on the oxidation rate of RDX by persulfate, with a proportion constant of $1.21{\times}10^{-4}$ ($min^{-1}{\cdot}L/mg-NOM$) at $70^{\circ}C$ and persulfate/NOM molar ratio of 10/1. The decrease in RDX oxidation rate was linearly dependent upon the added NOM concentration. However, the estimated activation energy in the presence of 20 mg-NOM/L was within 3.3% error compared to that without NOM, which implies the addition of NOM does not alter intrinsic oxidation reaction.

본 연구는 토양이나 지하수 원위치 화학적 산화법(In-Situ Chemical Oxidation, ISCO)에서 사용할 수 있는 산화제 Persulfate를 상온에서 활용할 수 있도록 RDX를 처리대상물질로 연구하였다. Persulfate로 RDX를 처리한 결과, 반응은 유사1차반응으로 나타났으며 온도가 증가함에 따라 분해속도도 증가하였고, 이 때 활성화에너지(Activation energy)는 $1.14{\times}10^2kJ/mol$으로 산정되었다. Persulfate에 의한 RDX의 분해반응속도는 pH에 비례하여 증가하였으며, pH값이 4, 6, 8일 때 반응속도의 변화가 크지 않았다. 그러나 pH 10에서는 13배 이상 증가하였는데, persulfate에 의한 산화가 아니라 alkaline hydrolysis로 나타났다. Persulfate에 의한 RDX의 분해반응속도는 persulfate/RDX의 몰 비율에 따라 선형적으로 증가하였으며, $70^{\circ}C$에서 측정한 비례상수는 $4{\times}10^{-4}$ ($min^{-1}$/몰 비율)이었다. 용액 내 천연유기물(NOM) 농도가 증가함에 따라 persulfate에 의한 RDX 분해속도 선형 감소하였으며 $70^{\circ}C$, persulfate/RDX 몰비 10/1에서 측정한 비례상수는 $1.21{\times}10^{-4}$ ($min^{-1}{\cdot}L/mg-NOM$)이었다. 반응속도의 감소는 NOM 첨가량에 선형적으로 비례하였다. NOM 20 mg/L을 첨가한 반응의 Ea값은, 무첨가 반응에서 산정된 Ea값과 3.3% 오차에 불과하였는데, 이는 NOM의 첨가가 본래의 산화반응을 변화시키지는 않음을 의미한다.

Keywords

References

  1. LaGrega, M. D., Buckingham, P. L. and Evans, J.C., Hazardous Waste Management, 2nd Editon, McGraw-Hill Science (2000).
  2. 국방부, 사격장 토양오염조사 및 오염확산 방지대책 연구 (2002).
  3. 한국수자원공사, 다락대 사격장내 토양오염 정밀조사를 통한 한탄강댐 수질예측 및 복원공법 연구(2002).
  4. 박석효, 배범한, 김민경, 장윤영, "국내 소규모 군사격장 복합오염물질(화약물질 및 중금속)의 분포 및 거동," 수질보전, 24(5), 523-532(2008).
  5. 포천시, 군부대 사격장 주변지역 피해 사례집(2009).
  6. McGrath, C. J., Review of Formulations for Processes Affecting the Subsurface Transport of Explosives, U. S. Army Engineer Waterways Experiment Station, Technical Report, IRRP-95-2(1995).
  7. Mukhi, S., Pan, X., Cobb, G. P., and Patino, R., "Toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine to larval zebra fish (Danio rerio)," Chemosphere, 61, 178-185(2005). https://doi.org/10.1016/j.chemosphere.2005.02.067
  8. U.S. EPA, Drinking Water Standards and Health Advisories, EPA 822-B-00-001(2000).
  9. Siegrist, R. L., "Fundamentals of in-situ chemical oxidation (ISCO)," in In Situ Treatment of Groundwater Contaminated With Non-Aqueous Phase Liquid Contamination: Fundamentals and Case Studies, U. S. Technology Innovation Office, Dec. 10-11(2002).
  10. ITRC, Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater, 2nd Eds.(2005).
  11. Huling, S. G. and Pivetz, B. E., In-Situ Chemical Oxidation, U. S. EPA Engineering Issue, EPA/600/R-06/072(2006).
  12. House, D. A., "Kinetics and mechanism of oxidations by peroxydisulfate," Chem. Rev., 62, 185-203(1962). https://doi.org/10.1021/cr60217a001
  13. Ahmed, M, Teel, A. L., and Watts, R. J., "Persulfate activation by subsurface minerals," J. Contam. Hydrol., 115, 34-45(2010). https://doi.org/10.1016/j.jconhyd.2010.04.002
  14. Yand, S., Wang, P., Yang, X., Wei Guang, Zhang W., and Shan L., "A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation," J. Environ. Sci.(China), 21, 1175-1180(2009). https://doi.org/10.1016/S1001-0742(08)62399-2
  15. Liang, C., Wang, Z. S., and Mohanty, N., "Influences of carbonate and chloride on persulfate oxidation of trichloroethylene at $20^{\circ}C$," Sci. Total Environ., 370, 271-277(2006). https://doi.org/10.1016/j.scitotenv.2006.08.028
  16. Brown, R. A. and Robinson, D., "Response to naturally occurring organic matter: Permanganate versus persulfate," in Proceeding of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Gavaskar, A. R. and Chen, A. S. C. Eds. Battelle Press, Columbus, OH, Paper 2A-06(2004).
  17. Huang K. C., Couttenye R. A., and Hoag Ge., "Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE)," Chemosphere, 49, 413-420(2002). https://doi.org/10.1016/S0045-6535(02)00330-2
  18. Liang C. J., Bruell, C. J., Marley M. C., and Sperry. K. L., "Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries," Soil Sedim. Contam., 12, 207-228(2003). https://doi.org/10.1080/713610970
  19. Liang, C. J., Lin, Y.-T., and Shih, W.-H., "Treatment of trichloroethylene by adsorption and persulfate oxidation in batch studies," Ind. Eng. Chem. Res., 48, 8373-8380(2009). https://doi.org/10.1021/ie900841k
  20. Huang, K. C., Zhao, Z., Hoag, G. E., Dahmani, A., and Block, P. A., "Degradation of volatile organic compounds with thermally activated persulfate oxidation," Chemosphere, 61, 551-560(2005). https://doi.org/10.1016/j.chemosphere.2005.02.032
  21. Zoh, K.-D., Stenstrom, M. K., "Fenton oxidation of hexahydro 1,3,5-trinitro-1,4,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-trtrazocine (HMX)," Water Res., 36, 1331-1341(2002). https://doi.org/10.1016/S0043-1354(01)00285-8
  22. Johnson, R. L., Tratnyek, P. G., and Johnson, R. O., "Persulfate persistence under thermal activation conditions," Environ. Sci. Technol., 42, 9350-9356(2008). https://doi.org/10.1021/es8019462
  23. Sra, K. S., Thomson, N. R., and Barker, J. F., "Persistence of persulfate in uncontaminated aquifer materials," Environ. Sci. Technol., 44, 3098-3104(2008).
  24. Heilmann, H. M., Wiesmann, U., and Stenstrom, M. K., "Kinetics of the alkaline hydrolysis of high explosives RDX and HMX in aqueous solution and adsorbed to activated carbon," Environ. Sci. Technol., 30, 1485-1492(1996). https://doi.org/10.1021/es9504101
  25. McCarty, J. F., "Colloid-facilitated transport of contaminants in groundwater: Mobilization of transuranic radionuclides from disposal trenches by natural organic matter," Phys. Chem. Earth, 23(2), 171-178(1998). https://doi.org/10.1016/S0079-1946(98)00009-3
  26. USGS, Characterization of dissolved and particulate natural organic matter(NOM) in Neversink Reservoir, New York, Scientific Investigations Report 5108(2005).
  27. Johnson, R. L., Johnson, G. O., Nurmi, J. T., and Tratnyek, P. G., "Natural organic matter enhanced mobility of nano zero-valent Iron," Environ. Sci. Technol., 43, 5455-5460(2009). https://doi.org/10.1021/es900474f