DOI QR코드

DOI QR Code

A Comparative Study on Mechanical Behavior of Low Temperature Application Materials for Ships and Offshore Structures

선박 및 해양구조물용 극저온 재료의 기계적 거동 특성

  • Park, Woong-Sup (Department of Naval Architecture and Ocean Engineering, Pusan Naval University) ;
  • Kang, Ki-Yeob (Department of Naval Architecture and Ocean Engineering, Pusan Naval University) ;
  • Chun, Min-Sung (Marine Research Institute, Samsung Heavy Industries Co., Ltd.) ;
  • Lee, Jae-Myung (Department of Naval Architecture and Ocean Engineering, Pusan Naval University)
  • 박웅섭 (부산대학교 조선해양공학과) ;
  • 강기엽 (부산대학교 조선해양공학과) ;
  • 전민성 (삼성중공업 조선해양연구소(주)) ;
  • 이제명 (부산대학교 조선해양공학과)
  • Received : 2010.12.01
  • Accepted : 2011.03.21
  • Published : 2011.06.20

Abstract

Austenite stainless steel(ASS), aluminum alloy and nickel steel alloy are the most widely used in many cryogenic applications due to superior mechanical properties at low temperature. The Face-Centered Cubic(FCC) and Hexagonal Close-Packed(HCP) materials are used for the primary and secondary insulation barrier of Liquefied Natural Gas(LNG) carrier tank and various kinds of LNG applications currently. In this study, tensile tests of ASS, aluminum alloy and nickel steel alloy were carried out for the acquisition of quantitative mechanical properties under the cryogenic environment. The range of thermal condition was room temperature to $-163^{\circ}C$ and strain rate range was 0.00016/s to 0.01/s considering the dependencies of temperatures and strain rates. The comprehensive test data were analyzed in terms of the characteristics of mechanical behavior for the development of constitutive equation and its application.

Keywords

References

  1. ASTM B209M. 2009. ASTM International, West Conshohocken, PA, DOI: 10.1520/B0209M-07.
  2. Babich, V.K. Pirogov, V.A. & Vakulenko, I.A. 1977. Strain-Hardening Parameters Determined from the Stress-Strain Curve. Strength of Materials, 9(6), pp.704-707. https://doi.org/10.1007/BF01537770
  3. Bang, K.W. 1989. Korea Research Institute of Standards and Science, pp.84-123.
  4. Chatfield, D.A. & Rote, R.R. 1981. Strain Rate. Effects on Properties of High Strength Steels. SAE Warrendale, Pennsylvania, Reprint(740), pp.177.
  5. Chun, M.S. et al., 2009. Experimental Investigation on the Impact Behavior of Membrane Type LNG Carrier Insulation System. Journal of Loss Prevention in the Process Industries, 22, pp.901–907. https://doi.org/10.1016/j.jlp.2008.09.011
  6. De, A.K. et al., 2006. Deformation-Induced Phase Transformation and Strain Hardening in Type 304 Austenitic Stainless Steel. Metallurgical and Materials Transactions A, 37(A), pp.1875-1886 https://doi.org/10.1007/s11661-006-0130-y
  7. Dieter, G.E. 1976. Mechanical Metallurgy. Mcgraw-Hill, New .York
  8. Harris, F.S. 1993. Safety features on LNG ships. Cryogenics, 33(8), pp.772-777. https://doi.org/10.1016/0011-2275(93)90186-R
  9. Hong, J.H. et al., 2008. Mechanical Characteristics of Stainless Steel under Low Temperature Environment. Journal of the Society of Naval Architects of Korea, 45(5), pp.530-537. https://doi.org/10.3744/SNAK.2008.45.5.530
  10. Klepaczko, J.R. & Łodygowski, T., 2009. Advances in constitutive relations applied in computer codes. Springer Wien New York, pp.88-98.
  11. Korean Standards Information Center, 2006. Korean industrial standard, South Korea.
  12. Lee, K.J. Chun, M.S. Kim, M.H. & Lee, J.M., 2009. A new constitutive model of austenitic stainless steel for cryogenic applications. Computational Material Science, 46, pp. 1152-1162. https://doi.org/10.1016/j.commatsci.2009.06.003
  13. Lee, K.J. et al., 2008. Development of Temperature Dependent Damage Model for Evaluating Material Performance under Cryogenic Enviroment. Journal of the Society of Naval Architects of Korea, 45(5), pp.538-546 https://doi.org/10.3744/SNAK.2008.45.5.538
  14. Mahmudi, R., 1995. Strain rate sensitivity of a wrought Al-1.2%Fe alloy. Scripta Metall. Mater, 32, pp.2061-2065. https://doi.org/10.1016/0956-716X(95)00055-Z
  15. Obst, B. & Nyilas, A., 1991. Experimental evidence on the dislocation mechanism of serrated yielding in f.c.c. metals and alloys at low temperatures. Materials Science and Engineering A, 137, pp.141-150. https://doi.org/10.1016/0921-5093(91)90328-K
  16. Olson, G.B. & Cohen, M., 1975. Kinetics of strain-induced martensitic nucleation. Metallurgical and Materials Transactions A, 110(3), pp.791-795.
  17. Park, W.S. Yoo, S.W. Kim, M.H. & Lee, J.M., 2010. Strain-rate Effects on the Mechanical Behavior of the AISI 300 Series of Austenitic Stainless Steel under Cryogenic Environments. Materials and Design, 31, pp.3630-3640. https://doi.org/10.1016/j.matdes.2010.02.041
  18. Patankar, S.N. & Tan, M.J., 1998. Strain rate insensitive plasticity in aluminum alloy 5083. Scripta Materialia, 38, pp.1255-1261. https://doi.org/10.1016/S1359-6462(98)00017-7
  19. Pustovalov, V.V., 2008. Serrated Deformation of Metals and Alloys at Low Temperatures. Low temperature physics. 34, pp.683-723. https://doi.org/10.1063/1.2973710
  20. Reed, R.P. & Simon, N.J., 1990. Discontinuous Yielding in Austenitic Steels at Low Temperatures. Advances in Cryogenic Engineering, 36(B), pp.1077-1086.
  21. Schwaiger, R. et al., 2003. Some Critical Experiments on the Strain-Rate Sensitivity of Nanocrystalline Nickel. Acta Metall. Mater. V, 51, pp.5159-5172.
  22. Seeger, A., 1955. The generation of lattice defects by moving dislocations and its application to the temperature dependence of the flow-stress of F.C.C. crystals. Philosophical Magazine, 46, pp.1194-1217. https://doi.org/10.1080/14786441108520632
  23. Seeger, A., 1958. Handbuch der Physik, Vol. VII/2, Springer, pp.109.
  24. Talonen, J. Nenonen, P. Pape, G. & Hänninen, H., 2005. Effect of Strain Rate on the Strain-Induced $\gamma\rightarrow\alpha$'-Martensite Transformation and Mechanical Properties of Austenitic Stainless Steels. Metallurgical and Materials Transactions A, 36(A), pp.421-432. https://doi.org/10.1007/s11661-005-0313-y
  25. Thomas, M. F., 2005. Cryogenic engineering, Marcel Dekker, Inc., New York, pp.257-291.
  26. Voorhees, H.R., 1969. A Survey of Effects on Lower-Than-Usual Rates of Strain in the Yield and Tensile Strengths of Metals. ASTM Data Series DS44.
  27. Yao, X.X. & Zajac, S., 2000. The strain-rate Sensitivity of flow stress and work-hardening rate in a hot deformed Al-1.0 Mg alloy. Journal of materials science letters, 19(9), pp.743-744. https://doi.org/10.1023/A:1006763227010

Cited by

  1. Study on Cryogenic Behavior of Reinforced Polyurethane Foam for Membrane Type LNG Carrier vol.27, pp.1, 2013, https://doi.org/10.5574/KSOE.2013.27.1.074
  2. Ultimate Strength Assessment of Ship Stiffened Panel under Arctic Conditions vol.51, pp.4, 2014, https://doi.org/10.3744/SNAK.2014.51.4.283
  3. Fatigue crack growth characteristics of austenitic stainless steel for cold-stretched pressure vessels at cryogenic temperatures vol.47, pp.5-6, 2016, https://doi.org/10.1002/mawe.201600520
  4. Cryogenic Compressive Strength and Thermal Deformation of Reinforced Polyurethane Foam Material for Membrane Type LNG Carrier vol.773, pp.1662-9795, 2018, https://doi.org/10.4028/www.scientific.net/KEM.773.30