DOI QR코드

DOI QR Code

The Magnetoresistance in Iron-based Superconductors

  • Lv, B. (National Lab of Solid State Microstructures, Department of Physics, Nanjing University) ;
  • Xie, R.B. (National Lab of Solid State Microstructures, Department of Physics, Nanjing University) ;
  • Liu, S.L. (College of Mathematics and Physics, Nanjing University of Posts and Telecommunications) ;
  • Wu, G.J. (College of Sciences, Nanjing University of Technology) ;
  • Shao, H.M. (National Lab of Solid State Microstructures, Department of Physics, Nanjing University) ;
  • Wu, X.S. (National Lab of Solid State Microstructures, Department of Physics, Nanjing University)
  • 투고 : 2011.05.14
  • 심사 : 2011.06.12
  • 발행 : 2011.06.30

초록

The phase transition of vortex matter from solid to liquid was studied in iron-based superconductors. Based on the traditional vortex glass theory, we have examined the magnetoresistivity data of iron-based superconductors using our extended thermal activation model: $\rho(B,T)=\rho((T-T_g(B))/(T_c(0)-T_g(B)))^{v(z-1)}$. We predict that the magnetic field-dependent area S + $S_0$ which integrates $\rho$ with T is proportional to $B^{\beta}$, where ${\beta}$ is the vortex glass transition exponent. From our calculation, the vortex glass transition exponent is 0.33, close to the exponent of area $S_0$ + S is 0.31 in $SmO_{0.9}F_{0.1}FeAs$; the exponent of area S is 0.63, which is close to the irreversibility line exponent 2/3. Both of the results show the validity of our model. In addition, our model is shown to be effective in describing irreversibility behavior in layered superconductors.

키워드

참고문헌

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008). https://doi.org/10.1021/ja800073m
  2. Z. A. Ren, G. C. Che, X. L. Dong, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, L. L. Sun, F. Zhou, and Z. X. Zhao, Europhys. Lett. 83, 17002 (2008). https://doi.org/10.1209/0295-5075/83/17002
  3. H. H. Wen, G. Mu, L. Fang, H. Yang, and X. Zhu, Europhys. Lett. 82, 17009 (2008). https://doi.org/10.1209/0295-5075/82/17009
  4. C. de la Cruz, Q. Huang, J. W. Lynn, J. Y. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. C. Dai, Nature 453, 899 (2008). https://doi.org/10.1038/nature07057
  5. J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang, and N. L. Wang, Europhys. Lett. 83, 27006 (2008). https://doi.org/10.1209/0295-5075/83/27006
  6. A. Rydh, O. Rapp, and M. Anderson, Phys. Rev. Lett. 83, 1850 (1999). https://doi.org/10.1103/PhysRevLett.83.1850
  7. M. Anderson, A. Rydh, and O. Rapp, Phys. Rev. B. 63, 184511 (2001). https://doi.org/10.1103/PhysRevB.63.184511
  8. S. L. Liu, G. J. Wu, X. B. Xu, J. Wu, and H. M. Shao, Supercond. Sci. Technol. 18, 1332 (2005). https://doi.org/10.1088/0953-2048/18/10/014
  9. Y. Z. Zhang, Z. A. Ren, and Z. X. Zhao, Supercond. Sci. Technol. 22, 065012 (2009). https://doi.org/10.1088/0953-2048/22/6/065012
  10. M. P. A. Fisher, Phys. Rev. Lett. 62, 1415 (1989). https://doi.org/10.1103/PhysRevLett.62.1415
  11. R. H. Koch, V. Foglietti, W. J. Gallagher, G. Koren, A. Gupta, and M. P. A. Fisher, Phys. Rev. Lett. 63, 1511 (1989). https://doi.org/10.1103/PhysRevLett.63.1511
  12. D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B 43, 130 (1991). https://doi.org/10.1103/PhysRevB.43.130
  13. D. A. Huse, M. P. A. Fisher, and D. S. Fisher, Nature 358, 553 (1992). https://doi.org/10.1038/358553a0
  14. M. Tinkham, Phys. Rev. Lett. 61, 1658 (1988). https://doi.org/10.1103/PhysRevLett.61.1658
  15. T. T. M. Palstra, B. Batlogg, R. B. van Dover, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41, 6621 (1990). https://doi.org/10.1103/PhysRevB.41.6621
  16. Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, Chin. Phys. Lett. 25, 2215 (2008). https://doi.org/10.1088/0256-307X/25/6/080
  17. Z. H. Wang, X. W. Zou, J. Fang, T. Yang, Y. L. Tang, Z. Huang, L. Qiu, J. L. Chen, H. Zhang, and S. Y. Ding, Supercond. Sci. Technol. 15, 183 (2002). https://doi.org/10.1088/0953-2048/15/2/301
  18. S. Patnaik, A. Gruevich, S. D. Bu, S. D. Kaushik, J. Choi, C. B. Eom, and D. C. Larbalestier, Phys. Rev. B 70, 064503 (2004). https://doi.org/10.1103/PhysRevB.70.064503
  19. V. V. Gridin, T. W. Krause, P. K. Ummat, and W. R. Datars, Solid State Commun. 78, 515 (1991). https://doi.org/10.1016/0038-1098(91)90367-5
  20. L. F. Hou, J. Deak, P. Metealf, M. McElfresh, and G. Preosti, Phys. Rev. B 55, 11806 (1997). https://doi.org/10.1103/PhysRevB.55.11806
  21. H. Safar, P. L. Gammel, D. J. Bishop, D. B. Mitzi, and A. Kapitulnik, Phys. Rev. Lett. 68, 2672 (1992). https://doi.org/10.1103/PhysRevLett.68.2672
  22. J. Pankert, G. Marback, A. Comberg, P. Lemmerns, P. Froning, and C. Ewert, Phys. Rev. Lett. 65, 3052 (1990). https://doi.org/10.1103/PhysRevLett.65.3052