DOI QR코드

DOI QR Code

Effect of Annealing Temperature on Soft Magnetic Properties of Cold Rolled 0.30 mm Thick Fe-6.5wt.%Si Foils

  • Fang, X.S. (State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing) ;
  • Lin, J.P. (State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing) ;
  • Liang, Y.F. (State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing) ;
  • Ye, F. (State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing) ;
  • Zhang, L.Q. (State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing) ;
  • Chen, G.L. (State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing)
  • Received : 2011.04.25
  • Accepted : 2011.05.29
  • Published : 2011.06.30

Abstract

0.30 mm thick and 90 mm wide thin foils made of Fe-6.5wt.%Si alloy were successfully fabricated by traditional rolling. The as-rolled sheets had good shapes and shining metal luster. The effects of annealing temperature on the magnetic properties of the sheets were investigated. Excellent Dc properties ($H_c$: 11.55 A/m, ${\mu}_m$: 23710, and $B_s$: 1.439 T) were obtained at an annealing temperature of 1453 K for 1.5 h. At low frequencies ($\leq$ 1 kHz), heat treatment temperature has little effect on iron loss which remained at the level of 9.8 W/kg. Annealing at 1273 K for 1.5 h is optimum for frequencies above 5 kHz.

Keywords

References

  1. R. M. Bozorth, Ferromagnetism, D. Van Nostrand Company, New York (1951) pp. 67-101.
  2. K. I. Arai and K. J. Ishiyama, J. Magn. Magn. Mater. 133, 233 (1994). https://doi.org/10.1016/0304-8853(94)90534-7
  3. M. Komatsubara, K. Sadahiro, O. Kondo, T. Takamiya, and A. Honda, J. Magn. Magn. Mater. 242-245, 212 (2002). https://doi.org/10.1016/S0304-8853(01)01164-7
  4. T. Watanabe, H. Fujii, H. Oikawa, and K. I. Arai, Acta Metal. 37, 941 (1989). https://doi.org/10.1016/0001-6160(89)90021-7
  5. M. Abe, Y. Takada, T. Murakami, and Y. Mihara, J. Mater. Eng. 11, 109 (1989). https://doi.org/10.1007/BF02833761
  6. T. R. Yanez, Y. Houbaert, and V. G. Rodriguez, J. Appl. Phys. 91, 7857 (2002). https://doi.org/10.1063/1.1449445
  7. G. K. Tian and X. F. Bi, J. Alloy. Compd. 502, 1 (2010). https://doi.org/10.1016/j.jallcom.2010.02.175
  8. K. N. Kim, L. M. Pan, J. P. Lin, Y. L. Wang, Z. Lin, and G. L. Chen, J. Magn. Magn. Mater. 277, 331 (2004). https://doi.org/10.1016/j.jmmm.2003.11.012
  9. G. L. Chen, J. H. Peng, and W. X. Xu, Intermetallics 6, 315 (1998). https://doi.org/10.1016/S0966-9795(97)00085-X
  10. Y. F. Liang, F. Ye, J. P. Lin, Y. L. Wang, and G. L. Chen, J. Alloys. Compd. 491, 268 (2010). https://doi.org/10.1016/j.jallcom.2009.10.118
  11. R. K. Roy, A. K. Panda, M. Ghosh, A. Mitra, and R. N. Ghosh, J. Magn. Magn. Mater. 321, 2865 (2009). https://doi.org/10.1016/j.jmmm.2009.04.052
  12. C. Bolfarini, M. C. Alves-Silva, A. M. Jorge-Jr, C. S. Kiminami, and W. J. Botta, J. Magn. Magn. Mater. 320, e653 (2008). https://doi.org/10.1016/j.jmmm.2008.04.104
  13. T. Ros-Yanez, Y. Houbaert, O. Fischer, and J. Schneider, J. Mater. Process. Technol. 143-144, 916 (2003). https://doi.org/10.1016/j.jmatprotec.2003.10.002
  14. Y. H. Kim, M. Ohkawa, and K. I. Arai, IEEE Trans. Magn. 29, 3535 (1993). https://doi.org/10.1109/20.281221
  15. H. Haiji, K. Okada, T. Hiratani, M. Abe, and M. Ninomiya, J. Magn. Magn. Mater. 160, 109 (1996). https://doi.org/10.1016/0304-8853(96)00128-X