DOI QR코드

DOI QR Code

Magnetic Properties of Cr-doped LiNbO3 by Using the Projection Operator Technique

  • Park, Jung-Il (Nano Practical Application Physics Lab, Department of Physics, Kyungpook National University) ;
  • Lee, Hyeong-Rag (Nano Practical Application Physics Lab, Department of Physics, Kyungpook National University) ;
  • Lee, Haeng-Ki (Department of Radiotechnology, Daegu Polytechnic College University)
  • 투고 : 2011.03.11
  • 심사 : 2011.05.03
  • 발행 : 2011.06.30

초록

The electron spin resonance lineshape (ESRLS) function for the electron spin resonance linewidth (ESRLW) of $Cr^{3+}$ (S = 3/2) in ferroelectric lithium niobate single crystals doped with 0.05 wt% of Cr, is obtained by using the projection operator technique (POT), developed by Argyres and Sigel. The ESRLS function is calculated to be axially symmetric about the c - axis and analyzed by using the spin Hamiltonian $H_{SP}={\mu}_B(B{\cdot}{^\leftrightarrow_{g}}{\cdot}S)+S{\cdot}{^\leftrightarrow_{D}}{\cdot}S$ with the parameters g = 1.972 and D = $0.395\;cm^{-1}$. In the ca plane, the linewidths show a strong angular dependence, whereas in the ab plane, they are independent of the angle. This result implies that the resonance center has an axial symmetry along the c - axis. Further, from the temperature dependence of the linewidths that is shown, it can be seen that the linewidths increase as the temperature increases, at a frequency of v = 9.27GHz. This result implies that the scattering effect increases with increasing temperature. Thus, the POT is considered to be more convenient to explain the scattering mechanism as in the case of other optical resonant systems.

키워드

참고문헌

  1. G. Burns, D. F. O'Kane, and R. S. Title, Phys. Rev. 167, 314 (1968). https://doi.org/10.1103/PhysRev.167.314
  2. N. F. Evlanova, L. S. Kornienko, L. N. Rashkovich, and A. O. Rybaltovskii, Sov. Phys. JEPT. 26, 1090 (1968).
  3. D. G. Rexford, Y. M. Kim, and H. S. Story, J. Chem. Phys. 52, 860 (1970). https://doi.org/10.1063/1.1673065
  4. D. B. Fraser and A. W. Warner, J. Appl. Phys. 37, 3853 (1966). https://doi.org/10.1063/1.1707937
  5. H. C. Huang, J. D. Knox, Z. Turski, R. Wargo and J. J. Hanak, Appl. Phys. Lett. 24, 109 (1974). https://doi.org/10.1063/1.1655114
  6. F. R. Gfeller, Appl. Phys. Lett. 29, 655 (1976). https://doi.org/10.1063/1.88889
  7. I. P. Kaminow, J. R. Carruthers, E. H. Turner and L. W. Stulz, Appl. Phys. Lett. 22, 540 (1973). https://doi.org/10.1063/1.1654500
  8. R. T. smith and F. S. Welsh, J. Appl. Phys. 42, 2219 (1971). https://doi.org/10.1063/1.1660528
  9. H. R. Lee, Condens. Matter Phys. 98, 11008 (1988).
  10. H. Mori, Progr. Theor. Phys. 34, 399 (1965). https://doi.org/10.1143/PTP.34.399
  11. A. Kawabata, J. Phys. Soc. Jpn. 29, 902 (1970). https://doi.org/10.1143/JPSJ.29.902
  12. A. Lodder and S. Fujita, J. Phys. Soc. Jpn. 25, 774 (1968). https://doi.org/10.1143/JPSJ.25.774
  13. A. Suzuki and D. Dunn, Phys. Rev. B 25, 7754 (1982). https://doi.org/10.1103/PhysRevB.25.7754
  14. J. I. Park and H. R. Lee, J. Korean Phys. Soc. 51, 623 (2007). https://doi.org/10.3938/jkps.51.623
  15. J. I. Park and H. R. Lee, J. Korean Phys. Soc. 53, 776 (2008). https://doi.org/10.3938/jkps.53.776
  16. P. N. Argyres and J. L. Sigel, Phys. Rev. Lett. 31, 1397 (1973). https://doi.org/10.1103/PhysRevLett.31.1397
  17. R. W. Zwanzig, in Lectures in Theoretical Physics, edited by W. E. Downs and J. Downs, Interscience, New York (1996).
  18. V. M. Kenkre, Phys. Rev. Lett. 29, 9 (1971).
  19. V. M. Kenkre, Phys. Rev. A 4, 2327 (1971). https://doi.org/10.1103/PhysRevA.4.2327
  20. J. Y. Sug, Phys. Rev. B 64, 235210 (2001). https://doi.org/10.1103/PhysRevB.64.235210
  21. J. Y. Sug, Phys. Rev. E 55, 314 (1997). https://doi.org/10.1103/PhysRevE.55.314
  22. W. Xiaoguang, F. M. Peeters and J. T. Devreese, Phys. Rev. B 34, 8800 (1986) https://doi.org/10.1103/PhysRevB.34.8800
  23. X. Wu, F. M. Peeters and J. T. Devreese, Phys.Rev. B 40, 4090 (1989) https://doi.org/10.1103/PhysRevB.40.4090
  24. X. J. Kong, C. W. Wei, and S. W. Gu, Phys. Rev. B 39, 3230 (1989). https://doi.org/10.1103/PhysRevB.39.3230
  25. L. P. Gor'kov and G. M. Eliashberg, Sov. Phys. JEPT 21, 940 (1965).
  26. R. J. Elliott, Phys. Rev. 96, 266 (1966).
  27. T. W. Kim and J. K. Oh, J. Magnetics 13, 11 (2008). https://doi.org/10.4283/JMAG.2008.13.1.011
  28. T. W. Kim and J. K. Oh, J. Magnetics 13, 43 (2008). https://doi.org/10.4283/JMAG.2008.13.2.043

피인용 문헌

  1. Electron Spin Transition Line-width of Mn-doped Wurtzite GaN Film for the Quantum Limit vol.17, pp.1, 2012, https://doi.org/10.4283/JMAG.2012.17.1.013
  2. Under the Polarized External Radiation vol.17, pp.2, 2013, https://doi.org/10.6564/JKMRS.2013.17.2.092
  3. Thermal Conductivity of Single-Walled Carbon Nanotube by Using Memory Function vol.22, pp.3, 2013, https://doi.org/10.5757/JKVS.2013.22.3.144
  4. Application of a Continued-Fraction-Based Theory to Line-Profile in Mn-Doped GaN Film vol.51, pp.5R, 2013, https://doi.org/10.7567/JJAP.51.052402
  5. Electron Spin Resonance Line-widths of Carbon Nanotubes based on the Hyperfine Interaction vol.19, pp.1, 2015, https://doi.org/10.6564/JKMRS.2015.19.1.011