DOI QR코드

DOI QR Code

Magnetization Process in Vortex-imprinted Ni80Fe20/Ir20Mn80 Square Elements

  • Xu, H. (Dept. of Physics and Astronomy, University of Victoria) ;
  • Kolthammer, J. (Dept. of Physics and Astronomy, University of Victoria) ;
  • Rudge, J. (Dept. of Physics and Astronomy, University of Victoria) ;
  • Girgis, E. (Dept. of Physics and Astronomy, University of Victoria) ;
  • Choi, B.C. (Dept. of Physics and Astronomy, University of Victoria) ;
  • Hong, Y.K. (Dept. of Electrical and Computer Engineering, The University of Alabama) ;
  • Abo, G. (Dept. of Electrical and Computer Engineering, The University of Alabama) ;
  • Speliotis, Th. (Institute of Materials Science, NCSR) ;
  • Niarchos, D. (Institute of Materials Science, NCSR)
  • Received : 2011.02.09
  • Accepted : 2011.04.29
  • Published : 2011.06.30

Abstract

The vortex-driven magnetization process of micron-sized, exchange-coupled square elements with composition of $Ni_{80}Fe_{20}$ (12 nm)/$Ir_{20}Mn_{80}$ (5 nm) is investigated. The exchange-bias is introduced by field-cooling through the blocking temperature (TB) of the system, whereby Landau-shaped vortex states of the $Ni_{80}Fe_{20}$ layer are imprinted into the $Ir_{20}Mn_{80}$. In the case of zero-field cooling, the exchange-coupling at the ferromagnetic/antiferromagnetic interface significantly enhances the vortex stability by increasing the nucleation and annihilation fields, while reducing coercivity and remanence. For the field-cooled elements, the hysteresis loops are shifted along the cooling field axis. The loop shift is attributed to the imprinting of displaced vortex state of $Ni_{80}Fe_{20}$ into $Ir_{20}Mn_{80}$, which leads to asymmetric effective local pinning fields at the interface. The asymmetry of the hysteresis loop and the strength of the exchange-bias field can be tuned by varying the strength of cooling field. Micromagnetic modeling reproduces the experimentally observed vortex-driven magnetization process if the local pinning fields induced by exchange-coupling of the ferromagnetic and antiferromagnetic layers are taken into account.

Keywords

References

  1. J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz, and M. D. Baro, Phys. Rep. 422, 65 (2005). https://doi.org/10.1016/j.physrep.2005.08.004
  2. J. Eisenmenger, Z. P. Li, W. Macedo, and I. K. Schuller, Phys. Rev. Lett. 94, 057203 (2005). https://doi.org/10.1103/PhysRevLett.94.057203
  3. W. Jung, F. J. Castaño, and C. A. Ross, Phys. Rev. Lett. 97, 247209 (2006). https://doi.org/10.1103/PhysRevLett.97.247209
  4. C. M. Schneider, O. de Haas, D. Tietjen, U. Muschiol, N. Cramer, Z. Celinski, A. Oelsner, M. Klais, C. Zieten, O. Schmidt, G. Schonhense, N. Zema, and S. Zennaro, J. Phys. D 35, 2472 (2002). https://doi.org/10.1088/0022-3727/35/20/302
  5. J. Fassbender, S. Poppe, T. Mewes, A. Mougin, B. Hillebrands, D. Engel, M. Jung, A. Ehresmann, H. Schmoranzer, G. Faini, K. J. Kirk, and J. N. Chapman, Phys. Status Solidi (a) 189, 439 (2002). https://doi.org/10.1002/1521-396X(200202)189:2<439::AID-PSSA439>3.0.CO;2-4
  6. B. C. Choi, E. Girgis, C. A. Ross, Th. Speliotis, Y. K. Hong, G. Abo, D. Niarchos, and H. Miyagawa, Phys. Rev. B 81, 092404 (2010). https://doi.org/10.1103/PhysRevB.81.092404
  7. B. C. Choi, Y. K. Hong, J. Rudge, G. W. Donohoe, and Q. F. Xiao, J. Magnetics 11, 61 (2006). https://doi.org/10.4283/JMAG.2006.11.2.061
  8. J. Sort, K. Buchanan, V. Novosad, A. Hoffmann, G. Salazar-Alvarez, and A. Bollero, Phys. Rev. Lett. 97, 067201 (2006). https://doi.org/10.1103/PhysRevLett.97.067201
  9. U. Nowak, K.D. Usadel, J. Keller, P. Miltenyi, B. Beschoten, and G. Guntherodt, Phys. Rev. B 66, 014430 (2002). https://doi.org/10.1103/PhysRevB.66.014430
  10. J. Mejia-Lopez, P. Soto, and D. Altbir, Phys. Rev. B 71, 104422 (2005). https://doi.org/10.1103/PhysRevB.71.104422
  11. J. Sort, A. Hoffmann, S.-H. Chung, K. S. Buchanan, M. Grimsditch, M. D. Baró, B. Dieny, and J. Nogues, Phys. Rev. Lett. 95, 067201 (2005) https://doi.org/10.1103/PhysRevLett.95.067201
  12. J. Sort, G. Salazar-Alvarez, M. D. Baro, B. Dieny, A. Hoffmann, V. Novosad, and J. Nogues, Appl. Phys. Lett. 88, 042502 (2006). https://doi.org/10.1063/1.2165290
  13. W. P. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956). https://doi.org/10.1103/PhysRev.102.1413
  14. W. P. Meiklejohn and C. P. Bean, Phys. Rev. 105, 904 (1957). https://doi.org/10.1103/PhysRev.105.904
  15. M. Tanase, A. K. Petford-Long, O. Heinonen, K. S. Buchanan, J. Sort, and J. Nogues, Phys. Rev. B 79, 014436 (2009). https://doi.org/10.1103/PhysRevB.79.014436
  16. M. R. Scheinfein, LLG Micromagnetics $Simulator^{TM}$, Version 2.63c (2009).
  17. C. Leighton, J. NoguEs, H. Suhl, and I. K. Schuller, Phys. Rev. B 60, 12837 (1999). https://doi.org/10.1103/PhysRevB.60.12837
  18. E. D. Dahlberg, B. Miller, B. Hill, B. J. Jonsson, V. Strom, K. Rao, J. Nogues, and I. K. Schuller, J. Appl. Phys. 83, 6893 (1998). https://doi.org/10.1063/1.367938

Cited by

  1. Magnetization Dynamics in Vortex-Imprinted Ni$_{80}$ Fe$_{20}$/Ir$_{20}$Mn$_{80}$ Square Elements vol.3, pp.1949-3088, 2012, https://doi.org/10.1109/LMAG.2012.2207882