
                    대한임베디드공학회논문지  제 6 권 제 4 호  2011년 8월                     231

New Hypervisor Improving

Network Performance for Multi-core CE Devices

Cheol-Ho Hong, Miri Park, Seehwan Yoo, Chuck Yoo*

Abstract : Recently, system virtualization has been applied to consumer electronics (CE) such as 

smart mobile phones. Although multi-core processors have become a viable solution for complex 

applications of consumer electronics, the issue of utilizing multi-core resources in the 

virtualization layer has not been researched sufficiently. 

In this paper, we present a new hypervisor design and implementation for multi-core CE devices. 

We concretely describe virtualization methods for a multi-core processor and multi-core-related 

subsystems. We also analyze bottlenecks of network performance in a virtualization environment 

that supports multimedia applications and propose an efficient virtual interrupt distributor. Our 

new multi-core hypervisor improves network performance by 5.5 times as compared to a 

hypervisor without the virtual interrupt distributor.

Keywords : Secure CE device, Hypervisor, Embedded multi-core processor, Network performance

* Corresponding Author

Manuscript received : 2011. 06. 15.,

Revised : 2011. 08. 03., Accepted : 2011. 08. 26.

Cheol-Ho Hong, Seehwan Yoo, Chuck Yoo : 

Korea University

Miri Park : LG Electronics

※ This work was supported by the National 

Research Foundation of Korea(NRF) grant 

funded by the Korea government(MEST) (No. 

2011-0029848).

1. Introduction

Recently, system virtualization has been 

applied to consumer electronics (CE) such as 

smart mobile phones to solve operating system 

(OS) security problems arising from Internet 

malware [1–3]. The virtualization layer or 

hypervisor allows multiple virtual machines 

(VMs) to be consolidated simultaneously in a 

physical machine. In a virtualized system, even 

though a guest operating system (guest OS) 

may be compromised by malware, other guest 

OSs and the system OS can remain uninfected 

by the isolation service provided by the 

hypervisor; this service enables the availability 

of the entire system and improves reliability.

In addition to reliability, system 

virtualization can provide user extensibility for 

a consumer to install personal virtual machines 

for the user’s own purposes. Consumer 

preferences have evolved to require multiple 

capabilities such as multimedia data play and 

Internet connectivity in a single device. By 

using a hypervisor and permitting the 

installation of personal virtual machines, device 

manufacturers can satisfy sophisticated 

consumer preferences with less effort. As 

recent smart phones or digital TV systems 

adopt general-purpose hardware such as ARM 

processors, personal virtual machines can be 

installed in these systems easily.

As mobile audio and video applications have 

become heavily CPU dependent, CE devices 

are migrating to the multi-core and 

multiprocessor systems-on-a-chip (MPSoC) 

platforms [4–6]. The CPU-dependent 

applications such as H.264 decoders require 

massive computing power for decoding 

complicated encoded frames. The most 

promising way to guarantee the 



232         New Hypervisor Improving Network Performance for Multi-core CE Devices

quality-of-service of these applications is to 

select multi-core processors such as the ARM 

MPCore series [8]. Practically, some CE 

device vendors have adopted multi-core 

processors for their set-top-box and digital 

TV products to provide true 1080p resolutions 

and better responsiveness of digital TV 

interfaces.

Although the complexity of applications has 

led embedded multi-core processors to be a 

viable solution, research of the hypervisor for 

these processors has not been accomplished 

sufficiently. Xen on ARM, a representative 

hypervisor for CE, is targeting a single-core 

platform. Although other commercial 

hypervisors support embedded multi-core 

processors, their design and implementation 

are unknown [11]. As CE devices are 

migrating to multi-core platforms, hypervisor 

research for multi-core devices is becoming 

essential.

In this paper, we present the hypervisor 

design and implementation for multi-core CE 

devices. In particular, the hypervisor aims not 

only to guarantee the quality-of-service of 

media applications but also to improve network 

performance by fully utilizing the multi-core 

resources in interrupt processing. The 

multi-core hypervisor that this paper presents 

is based on the ARM11 MPCore processor [8], 

[9] and is extended from the single-core 

MobiVMM, which is a research hypervisor for 

soft real-time applications [15], [16]. The 

main contributions of this paper are as follows:

First, we provide the experience of adopting 

virtualization technologies to multi-core 

platforms. We concretely and comprehensively 

describe the details of the hypervisor design, 

including not only a multi-core, but also a 

physical memory, and I/O devices virtualization, 

and multi-core-related subsystems that support 

virtual machines in the hypervisor.

Second, we provide hypervisor technologies 

for multimedia CE devices such as digital TV 

systems, set-top-boxes, and smart phones. Our 

hypervisor guarantees the quality-of-service 

by prioritizing multimedia-related interrupt 

handling and providing a preemptive virtual 

machine scheduler in the multi-core 

environment.

Third, we improve the network performance 

of general-purpose guest OSs when a soft 

real-time virtual machine and general-purpose 

guest OSs are consolidated in a multi-core CE 

system. We have found that if the two kinds of 

domains are running simultaneously, the 

network performance of general-purpose 

domains is deteriorated. In this case, the soft 

real-time virtual machine acquires most of the 

CPU bandwidth of the first core to process 

soft real-time related interrupts. To solve this 

problem, we implement a new and efficient 

virtual interrupt distributor that enables 

elaborated interrupt handling by increasing the 

utilization of the multi-core. In addition, we 

suggest methods of how and when to enable 

or disable the functionality of the virtual 

interrupt distributor by profiling and monitoring 

systems loads. Our additional functionality is 

placed in the virtualization layer so that guest 

OSs do not have to install any instrumentation. 

Our new multi-core hypervisor improves the 

network performance by 5.5 times compared 

with the hypervisor without a virtual interrupt 

distributor.

The remainder of this paper is structured 

as follows: In section 2, we explain the 

background of CE virtualization and related 

work. In section 3, we illustrate how a 

multi-core hypervisor is designed. Section 4 

describes multi-core-related subsystems. 

Section 5 proposes a method for improving 

network performance, and section 6 provides 

the evaluation results. Finally, we conclude in 

section 7.

2. Background and Related Work

In this section, we present a brief 

background on the virtualization architecture 



                    대한임베디드공학회논문지  제 6 권 제 4 호  2011년 8월                     233

for CE devices and related work.

A type 1 hypervisor that directly runs on a 

physical machine is appropriate for CE devices 

to guarantee maximum performance. 

Conversely, a type 2 hypervisor runs on a 

host OS and uses physical devices indirectly 

through the interfaces of the host OS; it is 

usually adopted in a desktop or server 

environment. 

Fig. 1 illustrates the architecture of the 

type 1 hypervisor for CE devices. It has the 

following characteristics:

Fig. 1. Architecture of a type 1 hypervisor for

CE devices

● At the bottom of the system software 

stacks, the hypervisor vir­tualizes all system 

resources such as a processor, a mem­ory, and 

I/O devices; it exports them in the form of a 

virtual machine.

● Each virtual machine provides a complete 

system environment, which is composed of 

virtual CPUs, a virtual memory, and virtual 

devices, to each guest OS.

● The number and composition of guest 

OSs can be variable according to the 

characteristics of the entire system and user 

applications. For example, the secure Xen on 

ARM [2] is composed of two identical Linux 

guest OSs: a secure guest OS for secure 

applications and an open guest OS for 

non-trusted applications. The OSTI architecture 

[12], new mobile phone specifications by Intel 

and NTT DoCoMo, targets the consolidation of 

two heterogeneous guest OSs (e.g., Linux and 

Windows Mobile): an operator guest OS for 

personal applications and an enterprise guest 

OS for business applications.

In terms of reliability, a hypervisor provides 

strong partitioning between virtual machines. 

The hypervisor places the guest OSs at a 

lower privilege level than itself and validates 

all the page table update requests of the guest 

OSs. This mechanism prevents one guest OS 

from reading from or writing on the system 

memory of the other guest OSs. Therefore, 

every virtual machine is isolated and protected 

from the others.

A hypervisor and guest OS on a CE device 

generally adopt a para-virtualization technique 

to minimize virtualization overhead than that of 

the full virtualization approach. The 

para-virtualization technique enables a 

collaboration between a hypervisor and a guest 

OS by providing communication channels named 

hyper calls, which are analogous to system 

calls between an operating system and a user 

application. The hyper calls request the 

hypervisor to execute the instructions on 

behalf of the guest OSs. Hyper calls include 

processor state update operations, for example, 

memory management unit (MMU) update and 

physical interrupt masking operations, that a 

guest OS cannot execute directly. Source 

codes of a guest OS should be modified in the 

para-virtualized approach to contain hyper 

calls.

Xen on ARM is migrated from the open 

source Xen [7] that targets server 

consolidation. In contrast to the server Xen, 

Xen on ARM targets the consolidation of 

embedded OSs and the security features 

between the OSs. It adopts a 

para-virtualization technique that requires 

operating system modification.

Xen on ARM provides ARM CPU, memory, 

and I/O device virtualization. In CPU 

virtualization, it replaces sensitive instructions, 

which modify system states and are executed 



234         New Hypervisor Improving Network Performance for Multi-core CE Devices

in the supervisor mode, of guest OSs to hyper 

calls. In memory virtualization, it provides 

memory protection between a hypervisor, guest 

OSs, and applications by exploiting a domain 

protection mechanism as the ARM architecture 

has fewer privilege rings (two rings) than the 

x86 architecture. In device virtualization, 

domain0, which is an administrator virtual 

machine, runs most of the native device 

drivers; all the hardware interrupts are 

delivered to domain0 before they are 

redirected to the target virtual machines as 

virtual interrupts. This architecture degrades 

network performance because network packets 

of the target virtual machine are sent or 

received through domain0 [7].

Our multi-core hypervisor is extended from 

the single-core MobiVMM, which is designed 

for a soft real-time research of smart mobile 

phones. It is based on the TI OMAP2430 

development platform; it implements ARM CPU 

virtualization, memory virtualization, and partial 

I/O virtualization, which is called pseudo I/O 

virtualization [15]. MobiVMM currently runs 

two Linux OSs as its guest OSs: guest OS1 for 

a soft real-time OS and guest OS2 for a 

general-purpose OS. Fig. 2 illustrates the 

structure of the single-core MobiVMM.

Fig. 2. Structure of the single-core 

MobiVMM

The MobiVMM design primarily considers 

the soft real-time property. MobiVMM uses a 

preemptive scheduler so that a soft real-time 

guest OS can get the processor time whenever 

it wants. We also provide low-latency I/O 

processing that cooperates with the scheduler 

to deliver interrupts and events to a soft 

real-time guest OS on time.

For I/O virtualization, we categorize devices 

into four groups on the basis of the usage 

type: dedicated, active, running, and dynamic 

devices. Dedicated devices are subject to a 

target virtual machine and are not shared 

among virtual machines. Active devices are 

shared devices and are active only when a 

user explicitly gives a control (e.g., key pad). 

Running devices are under control of the 

currently running virtual machine (e.g., 

hardware timer). Dynamic devices are fully 

shared devices.

VirtualLogix [11] is a commercial 

hypervisor for ARM-based processors, 

including ARM MPCore, but we are not aware 

of its technical details.

3. Hypervisor Design

In this section, we cover the details of the 

multi-core hypervisor design. In particular, we 

provide the virtualization methods for a 

multi-core processor, a physical memory, and 

I/O devices.

Fig. 3. Components of the ARM11 MPCore 

processor

The ARM11 MPCore processor consists of 

four major parts: four cores, local timers, CPU 

interfaces, and an interrupt distributor [9]. In 



                    대한임베디드공학회논문지  제 6 권 제 4 호  2011년 8월                     235

particular, each individual core implements 

ARM architecture v6 and has an L1 cache 

memory. For each core, each local timer 

generates timer interrupts. The CPU interfaces 

play the role of a communication channel 

between the cores and an interrupt distributor. 

They process interrupt acknowledgment, 

interrupt masking, and end of interrupt (EOI) 

acknowledgment. The interrupt distributor 

distributes hardware interrupts from physical 

devices to target cores. It also delivers 

inter-processor interrupts (IPIs) between cores. 

Fig. 3 illustrates all components of the 

processor.

For the virtualization of each individual 

core, the hypervisor replaces all of the 

sensitive instructions to hyper calls. The local 

timers, CPU interfaces, and interrupt distributor 

are also virtualized by the emulation of related 

instructions.

Fig. 4. Dynamic distribution of the virtual 

interrupt distributor

We extend the functionality of the 

virtualized interrupt distributor to scatter 

interrupts dynamically among cores. Originally, 

the ARM11 MPCore interrupt distributor does 

not support the dynamic distribution of 

interrupts [9], whereas the local APIC of x86 

platforms provides both static and dynamic 

distribution [10]. In the dynamic distribution 

manner, interrupts are distributed in a 

round-robin fashion among cores by an 

arbitration mechanism. As the MPCore 

processor does not support dynamic 

distribution, all hardware interrupts are 

delivered to the first core (core0) in default 

settings. Therefore, only the first core is 

mainly utilized even though interrupt loads are 

heavy. In order to overcome this limitation, the 

virtual interrupt distributor code that runs on 

core0 distributes interrupts to other cores 

dynamically when core0 is heavily utilized. 

This functionality helps interrupt processing, 

which is composed of the top-half and the 

bottom-half (soft IRQ in Linux) processes, to 

be distributed automatically among all cores.

The dynamic distribution of the virtual 

interrupt distributor operates as illustrated in 

Fig. 4. When a hardware interrupt occurs at 

the first core, the hypervisor generates an 

inter-processor interrupt to the target core. 

Then, the target core recognizes what the 

interrupt is by fetching the IPI number and 

delivers an interrupt event to the virtual CPU 

on the target core. Then, the guest OS code 

on the target core executes the interrupt 

handling processes. After completing the 

processes, it acknowledges the end of an 

interrupt to the source core through the CPU 

interface alias of the source core as the 

interrupt occurs on the source core.

The hypervisor shares the same address 

space with a guest OS in order to avoid 

frequent cache and TLB flush. It resides in the 

highest 32 MB of the 4-GB address space. 

Because the memory is an independent part 

not related to multi-core platforms, the 

implementation of the memory virtualization 

completely follows that of the single-core 

MobiVMM.

Compared to Xen on ARM in which domain0 

has all the native drivers, our hypervisor is 

designed to allow each guest OS to have 

native drivers. Each native driver is dedicated 

to a guest OS or shared between domains by 



236         New Hypervisor Improving Network Performance for Multi-core CE Devices

an I/O ring buffer mechanism that delivers the 

I/O requests and responses. This architecture 

helps to decrease the response time of a soft 

real-time virtual machine by preventing 

indirect access to native drivers. In our 

approach, each interrupt of the peripheral 

devices is delivered to the virtual machine that 

has the native device driver for that interrupt.

4. Subsystems in Hypervisor

In this section, we describe 

multi-core-related subsystems that manage and 

support virtual machines in the hypervisor.

We have implemented a simple credit-based 

scheduler [13] as our default virtual machine 

scheduler because in the multi-core 

environment, it exhibits high performance and 

CPU fairness between virtual machines. In the 

credit-based scheduler, credit refers to the 

CPU time or CPU bandwidth for which each 

virtual machine can run. A virtual machine is 

weighted by the credit amounts, and if two 

virtual machines have the same amount of 

credits, the virtual machines can get an equal 

amount of CPU time.

Our credit scheduler provides a variable 

quantum (10 ms–50 ms) for a virtual CPU, 

according to the characteristics of the system. 

In order to improve responsiveness, a short 

quantum value (10 ms) is appropriate. A virtual 

CPU of a domain consumes its credit at every 

10-ms time tick when it runs on a physical 

CPU. A virtual CPU with a positive credit 

value can be scheduled, and credits are 

redistributed to every virtual CPU periodically. 

In addition to this principle, in order to 

guarantee a soft real-time property as that of 

the single-core MobiVMM, our credit scheduler 

supports preemptiveness.

When multimedia-related interrupts (e.g., 

audio interrupts) occur at one physical core, 

we immediately deliver the interrupts to the 

soft real time virtual machine by prioritizing 

interrupt handling. Then, we preempt the 

general-purpose virtual machine running on the 

core so that the soft real-time virtual machine 

can obtain processor time immediately.

The virtual and physical time manager 

supports both virtual and physical time for 

guest OSs by the virtualization of each local 

timer in the processor. Virtual time advances 

when the guest OS receives timer events from 

the hypervisor while the virtual CPU of each 

guest OS is running. The virtual time is used 

for scheduling of processes in a guest OS. The 

physical time advances irrespective of whether 

each guest OS is running or not. A guest OS 

can use physical time whenever it needs to 

know the time passed since the boot of the 

system. For this purpose, the manager 

maintains a 64-bit global jiffy variable per 

local timer, which increases by 1 when the 

local timer generates a timer interrupt. The 

hypervisor exports the variable through a 

hyper call named vmm_get_global_jiffies() to 

each guest OS.

The startup module in the hypervisor starts 

a new virtual machine. When a control 

application in the first virtual machine (VM0) 

notifies the start of a new virtual machine to 

the startup module through a hyper call, the 

startup module prepares an initial page table 

that is necessary for the boot process of the 

new virtual machine. After preparing the page 

table, the module signals core0 to execute the 

first kernel code of the new virtual machine (in 

Linux, /arch/arm/kernel/head.S). The new 

virtual machine skips the process of building 

an initial page table because the process 

assumes that the MMU is off. Instead, it uses 

the page table delivered from the hypervisor. 



                    대한임베디드공학회논문지  제 6 권 제 4 호  2011년 8월                     237

At first, core0 only participates in the boot 

process; after an early system boot, other 

cores are activated by IPIs from core0.

5. Network Performance Improvement

In this section, we elaborate on how 

network performance can be improved with our 

hypervisor in a CE device. As an explanation, 

we provide an example of a virtualized CE 

device using the network.

Fig. 5. Configuration of the virtualized CE 

device

Fig. 5 describes the configuration of a 

virtualized CE device using the network. 

Practically, a virtualized CE device can be 

composed of a soft real-time virtual machine, 

which executes soft real-time applications such 

as MP3 and H.264 decoders, and a 

general-purpose virtual machine for Internet 

use. For example, a digital TV system can 

load a simple RTOS with an exclusive media 

player for TV and a Linux OS with an Internet 

browser or peer-to-peer (P2P) software. 

As our hypervisor allows each guest OS to 

have native drivers that can be dedicated or 

shared, it is possible to place a native driver 

for an audio device into the simple RTOS and 

to place a network driver into the 

general-purpose OS for decreasing the 

response time. In this architecture, audio 

interrupts are delivered to the soft real-time 

virtual machine; network interrupts are 

delivered to the general-purpose virtual 

machine.

When we use the abovementioned device 

with no support of dynamic distribution of 

interrupts, core0 spends most of the CPU 

bandwidth on the soft real-time virtual 

machine. When a user simultaneously executes 

multimedia applications and peer-to-peer 

software at each virtual machine, both audio 

and network interrupts occur continuously on 

core0. In order to play the sound of 

multimedia applications smoothly, we 

immediately deliver audio interrupts to the soft 

real-time virtual machine as interrupt events 

and preempt the general-purpose virtual 

machine if it is running. However, the problem 

is that the audio interrupts occur periodically 

and frequently, i.e., they occur 3–4 times per 

10 ms time tick; for reference, network 

interrupts mostly occur once per time tick in a 

single run of a network program. Even if the 

general-purpose virtual machine is selected to 

run by the scheduler, the virtual machine is 

preempted periodically within its time quantum 

by audio interrupts. Therefore, the soft 

real-time virtual machine acquires most of the 

CPU bandwidth of core0. Fig. 6 illustrates this 

situation.

Conversely, because the general purpose 

virtual machine receives CPU bandwidth less 

than from what it normally should, network 

performance suffers. The insufficient CPU 

bandwidth prevents the steady processing of 

network interrupt handling and causes delay in 

the occurrence of a next network interrupt.

We have measured the bandwidth of the 



238         New Hypervisor Improving Network Performance for Multi-core CE Devices

Fig. 7. Scattered interrupt processing among 

cores

Fig. 6. Interrupt processing on core0. Note 

that we use a preemptive scheduler so that the

soft real-time virtual machine can obtain 

processor time immediately when interrupts 

occur

network by using the Iperf benchmark program 

in the general-purpose virtual machine. When 

the soft real-time virtual machine is idle, the 

result is 15.7 Mb/s on an average. However, 

when the soft real-time virtual machine plays 

an mp3 file, the result is 2.30 Mb/s on an 

average.

In order to improve network performance, 

the hypervisor scatters the workloads to other 

cores that are idle or underutilized. This 

process is executed by the help of the virtual 

interrupt distributor and the hypervisor profiler. 

When both audio and network interrupts occur 

on a single core concurrently, the virtual 

interrupt distributor decides whether it will 

deliver one of the interrupts among other 

underutilized cores or not. The decision is 

based on the information given by the profiler 

in the hypervisor. 

The profiler separately maintains the 

frequency of audio and network interrupts 

during some intervals (e.g., 100 ms). The 

profiler then analyzes whether each frequency 

of audio and network interrupts is periodic or 

sporadic in the intervals. If both frequencies 

are periodic, the profiler informs the virtual 

interrupt distributor of the underutilized core 

that will be a target of the distribution. Then, 

the distributor sends one of the interrupts to 

the above informed core. If the dynamic 

distribution is once started by the distributor, 

the profiler continuously checks the CPU 

utilization of each core so as to guarantee the 

performance of interrupt processing. If any 

frequency becomes sporadic, the dynamic 

distribution is completed in order to prevent 

the inter-processor interrupts (IPIs) overhead 

caused by the processing of the interrupt 

distribution. Fig. 7 illustrates scattered 

workloads among core0, core1, and core2 

when the network interrupt is the target of 

distribution.

6. Evaluation

We have implemented the hypervisor on an 

ARM11 MPCore platform that has four 

250-MHz ARM11 cores. Fig. 8 shows our 

evaluation board with an ARM11 MPCore core 

tile. We use two para-virtualized guest OSs 

whose kernels are symmetric multiprocessors 

(SMP) Linux 2.6.21.

For experiments, we regard guest OS1 as 

the soft real-time OS and guest OS2 as the 

general-purpose OS. Using the Iperf network 

benchmark program, we have measured the 

network bandwidth in the general-purpose 

virtual machine.



                    대한임베디드공학회논문지  제 6 권 제 4 호  2011년 8월                     239

Fig. 8. Evaluation board with an ARM11 

MPCore core tile

Fig. 9. Measurement of bandwidth and number 

of interrupts while the soft real-time virtual 

machine plays an mp3 file in the sampling 

interval (150 time ticks)

We have measured the network bandwidth 

while the soft real-time virtual machine is idle. 

The result is 15.7 Mb/s on an average. This 

result is a performance baseline. Then, while 

the soft real-time virtual machine plays an 

mp3 file, we have measured the network 

bandwidth together with the number of network 

and audio interrupts received by the hypervisor 

at every time tick (every 10 ms). Fig. 9 shows 

the result in a sampling interval (150 time 

ticks = 1.5s). 

In this experiment, the network bandwidth 

is 2.30 Mb/s on an average and the network 

interrupts rarely occur. As the general-purpose 

virtual machine obtains a small amount of CPU 

bandwidth on core0, the processing of network 

interrupt handling is delayed. However, the 

number of audio interrupts (3~4 times per time 

tick) is the same as the number of interrupts 

in a single run of an audio program owing to 

the support for the soft real-time virtual 

machine.

Fig. 10. Measurement of bandwidth and number 

of interrupts while the interrupt distributor 

works in the sampling interval (150 time ticks)

We have measured the network bandwidth 

and the number of interrupts while the virtual 

interrupt distributor works. Fig. 10 shows the 

result in a sampling interval (150 ticks = 1.5s). 

In this experiment, the network interrupt is 

redirected to core1 with the help of the virtual 

interrupt distributor and the profiler.  As the 

distribution of network interrupts enables core1 

to participate in interrupt processing, the 

frequency of network interrupts is rapidly 

increased when compared with the experiment 

in Fig. 9. Therefore, the network bandwidth 

achieves 13.4 Mb/s on an average. The 

difference between the performance baseline 

(15.7 Mb/s) and this result is due to the 

inter-processor interrupts (IPIs) overhead 

between core0 and core1, which is illustrated 

in Fig. 4.

We have also measured the network 

bandwidth while the soft real-time virtual 

machine executes an H.264 decoder. The 



240         New Hypervisor Improving Network Performance for Multi-core CE Devices

H.264 media file is encoded for parallel 

decoding and the display resolution is 352 × 

288. Because the media file does not contain 

audio data, we have used an mp3 player 

instead. In this experiment, without the virtual 

interrupt distributor, the network bandwidth is 

2.21 Mb/s on an average. However, with the 

virtual interrupt distributor, the network 

bandwidth is 11.6 Mb/s on an average. 

Compared to the performance baseline (15.7 

Mb/s), the network performance somewhat 

degrades because cores1–3 become busy 

decoding H.264 frames.

Table 1 summarizes all the benchmark 

results. Compared to case no. 2 and case no.5 

whose bandwidths are in the range 2.21–2.30 

Mb/s, our approaches (case nos. 3 and 4 and 

case nos. 6 and 7) improve the network 

performance up to 5.5 times.

Table 1. Iperf benchmark result

Case no. Audio Network
Bandwidth
(Mb/s)

1. max bandwidth no 
audio

core0 15.7

2. only core0 core0 core0 2.30
3. distribution #1 core0 core1 13.4

4. distribution #2 core0 core1-3 13.0

5. only core0 with 
H.264 core0 core0 2.21

6. distribution #3 
with H.264 core0 core1 11.6

7. distribution #4 
with H.264 core0 core1-3 11.5

7. Conclusion

In this paper, we presented a new 

hypervisor design and implementation for 

multi-core CE devices. With our hypervisor, 

the requirements for strong security, user 

extensibility, and acceptable performance of 

the CE device could be met with less effort.

In particular, we described the details of 

the hypervisor design and multi-core-related 

subsystems. Also, we elaborated on network 

performance improvement in a virtualized CE 

device. With the help of the new dynamic 

virtual interrupt distributor in the virtualization 

layer, our approach improved the network 

performance up to 5.5 times.

References



                    대한임베디드공학회논문지  제 6 권 제 4 호  2011년 8월                     241

BIOGRAPHY

Cheol-Ho Hong

received the B.S. and M.S. 

degrees in computer 

science and engineering 

from Korea University, 

Seoul, Korea, in 2001 and 

2003, respectively.

 He worked as a senior researcher at 

Netville, Seoul, Korea, from 2003 to 2006. 

Currently, he is a Ph.D. candidate of Korea 

University, Seoul, Korea. His research 

interests include hypervisor, multi-core 

architecture, and embedded system.

Email : chhong@os.korea.ac.kr

Miri Park

received the B.S. and M.S. 

degree in computer 

science and engineering 

from Korea University, 

Seoul, Korea, in 2006 and 

2010, respectively.

 She worked as an engineer at Motorola, 

Seoul, Korea, from 2006 to 2007. Currently, 

she is an engineer at LG Electronics, Seoul, 

Korea. Her research interest is the system 

virtualization for RTOS.

Email : miri.park@lge.com

Seehwan Yoo

received the B.S. and M.S. 

degrees in computer 

science and engineering 

from Korea University, 

Seoul, Korea, in 2002 and 

2004, respectively.

 He is currently a Ph.D. candidate at Korea 

University, Seoul, Korea. His current interest 

is system virtualization.

Email : shyoo@os.korea.ac.kr

Chuck Yoo

received the B.S. degree 

in electronic engineering 

from Seoul National 

University, Seoul, Korea 

and the M.S. and Ph.D. in 

computer science from 

University of Michigan.

 He worked as a researcher in Sun 

Microsystems Laboratory, from 1990 to 1995. 

He is now a professor in department of 

computer science and engineering, Korea 

University, Seoul, Korea. His research 

interests include high-performance networks, 

multimedia streaming, and operating systems. 

He served as a member of the organizing 

committee for NOSSDAV 2001.

Email : hxy@os.korea.ac.kr


