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Abstract

In multi-center randomized clinical trial the treatment effect may be changed over
centers. It is thus important to investigate the heterogeneity in treatment effect between
centers. For this, uncorrelated random-effect models assuming independence between
random-effect terms have been often used, which may be a strong assumption. In this
paper we propose a correlated frailty modelling approach of investigating such hetero-
geneity using the hierarchical-likelihood method when the outcome is time-to-event.
In particular, we show how to construct a proper prediction interval for frailty, which
explores graphically the potential heterogeneity for a treatment-by-center interaction
term. The proposed method is illustrated via numerical studies based on data from the
design of a multi-center clinical trial.
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1. Introduction

A multi-center clinical trial with a standardized protocol involves collaborative research
efforts between participating centers in tasks of enrolling and following patients (Friedman
et al., 1998, p.345). The two main reasons for conducting multi-center trials are to re-
cruit an adequate number of participants within a reasonable time frame and to provide
a sound basis for generalizing any observed treatment effect. The latter reason owes much
to Bradford Hill’s (1962) ideas on consistency of effects. However, participating centers
may vary from specialized treatment centers to community hospitals and accordingly there
may be differences between the patient populations sampled which may lead to unantici-
pated treatment-by-center interaction. Alternatively, even when the trial protocol renders
the center samples homogeneous, clinical experience and practice may vary between centers,
leading, again, to a treatment-by-center interaction (Gray, 1994; Vaida and Xu, 2000). For
investigation of this heterogeneity the use of random-effect models, rather than fixed-effect
models, is useful (Gray, 1994; Andersen et al., 1999; Legrand et al., 2005; Ha, 2008a).
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In this paper we propose a general frailty modelling approach based on hierarchical likeli-
hood (h-likelihood) method (Ha et al., 2007; Ha, 2009; Kim et al., 2011) when the interesting
outcome is time-to-event (i.e. survival time). Vaida and Xu (2000) and Legrand et al. (2005)
have assumed the independence between frailty terms, but in this paper we allow their cor-
relation. For the inference, marginal likelihood approach (Vaida and Xu, 2000) or Bayesian
approach (Gray, 1994; Legrand et al., 2005) has been used. However, the marginal likelihood
approach often requires intractable computations because of integrating out random effects.
The h-likelihood avoids the integration itself and provides a statistically efficient estimation
procedure (Lee et al., 2006; Ha et al, 2001, 2010). In this paper, we also show that the
h-likelihood method gives a proper prediction interval of frailties (random effects), leading
to a graphical investigation for heterogeneity of main treatment effect over centers. That
is, plots based on these intervals are useful when investigating the heterogeneity of random
center and treatment effects. The Statistical Principles for Clinical Trials contained in the
international conference of harmonization (ICH, 1998) guidelines also suggest the need to
explore (e.g. graphically) potential heterogeneity via a treatment-by-center interaction term.

The paper is organized as follows. In Section 2 we present a general frailty model allowing
correlation between two-component random effects. In Section 3 we derive the h-likelihood
estimation procedure for fixed parameters and prediction of random effects, and then show
how to construct the prediction intervals. Simulation study for the proposed method is given
in Section 4. Finally, we discuss our approach in Section 5.

2. Correlated frailty models

Suppose that data consist of survival times of patients collected from ¢ centers. Let Tj; (i =
1,---,q j=1,---,n;, n=>,n;) be the survival time for the jth observation of the ith
center (or cluster). For each patient, we observe several covariates, denoted by 1, -+ , Tijp-
In particular, let x;;; be the binary covariate representing the main treatment arm to which
the patient has been randomized with x;;; = 1 if the patient is in the standard group and
x3j1 = 0 if the patient is in the experiment group. Denote by v;g and v;; the unobserved
random intercepts and slopes (or random effects) for the ith center, respectively.

Following Vaida and Xu (2000) and Legrand et al. (2005), frailty models analyzing survival
data from for multi-center trials are described as follows. Given log-frailties v;o and v;1, the
conditional hazard function of T}; takes the form

Aij(tlvio, vi1) = Xo(t) exp(nij) (2.1)

where A\g(t) is an unspecified baseline hazard function,

p
Nij = vio + (1 + vi1)xijn + Z Biziji (2.2)

1=2
is the linear predictor for the hazards, and z;; = (zi;1,- - ,xijp)T is covariates vectors
corresponding to unknown regression parameters 8 = (81,---,8,)T. The distribution of

frailties v; = (vi,v41)7 is usually assumed to follow a normal distribution (Vaida and Xu,
2000; Legrand et al., 2005) with mean E(v;) = 0 and var (v;) = X, which is useful for
modelling multi-component frailties (Ha et al., 2007). Here the variance-covariance matrix
of v;g and v, is given by
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S =%(0) = ("3 "01),

2
J01 0'1

which depends on o = (02,0%,001)7, a vector of unknown parameters (i.e. frailty param-
eters). However, Vaida and Xu (2000) and Legrand et al. (2005) assumed independence
between both frailties (v;o and v;1), leading that ¥ = diag(o3,0?) is diagonal with p = 0 ;
this can be a strong assumption. Our model (2.1) is a general one allowing the correlation,
p =001/(0p01), in 3.

In model (2.1), v;o means the random deviation of the ithe center from the overall under-
lying baseline risk. Similarly, v;; represents the random deviation of the 7 the center from
the overall treatment effect. Note here that v;g is called random baseline risk or random
center effect and that v;; is called random treatment effect or random treatment-by-center
interaction (Legrand et al., 2005).

3. Estimation and prediction

In this section we derive the estimation procedure for correlated models (2.1), and then
show how to construct the prediction interval of random effects.

3.1. Derivation of estimation procedure

Let C;; be the censoring time corresponding to survival time 7j;. Then we have the
following observable random variables,

Yij = miD(Tij, C”) and 51']' = I(T” < Cij),

where I(-) is the indicator function. Since the functional form of A\ (¢) is unknown, following
Breslow (1972) and Ha et al., (2001) we consider the baseline cumulative hazard function
Ao(t) to be a step function with jumps at the r distinct observed death times, Ag(t) =
Zk:y(k)gt Aok, where y) is the kth (k = 1,---,r) smallest distinct death time among the

yi;8, and Ao = Ao(Y(x))- Following Ha et al. (2001), the h-likelihood for the frailty models
(2.1) is defined by

h = h(B,Xo,0) = quj + Zfzu
i i

where

Z Crij =Y 655 {log Mo(yis) + mis} — Y Ao(yis) exp(ns;)

i ij

= Z d(x) log Aok + Z dijnij — Z Aok Z exp(nij) ¢
k ij k

(4,5) ER (1)
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lrij = l135(B, Ao; Yij, 0i5]vi) s the logarithm of the conditional density function for y;; and
di; given v;,

1 1
bo; = loi(osv;) = ~3 log det(27%(0)) — B U?E(a)_lvi

is the logarithm of the density function for v; with parameters = (02,0%,001)T, Ao =
(M1, - -+ Aor) T, d(k) is the number of deaths at y() and Ry = R(y) = {(, ) : ys; 2 Yk }
is the risk set at yx)-

Notice here that the dimension of )y increases with sample size n. For the estimation of
(B,v) with v = (v]"... ,v0 )T we use the profile h-likelihood h* (Ha et al., 2001; Ha and
Lee, 2003) with Ao eliminated:

- h|)\0 Ao ZEIU +ZZQ“

where /):Ok are solutions of the estimating equations, Oh/OAgx, = 0, for k = 1,--- ,r. Here,
Bij6i; = Bijliijl g oo = 2045 0ijMis — 2o dic 10g {Z(i’j)eR(k) exp(mj)} does not depend on

Xo. Thus, the estimation of 7 = (87, vT)T given ¢ is obtained by solving

oh* /o = (0h/0T) = 0. (3.1)

|/\DZXE
Next, the estimation of the frailty parameters o can be carried out by using the adjusted
profile h-likelihood (Lee and Nelder, 2001), defined by

; (3.2)

T=T

pr(h) = | B — % x log det {H(h*, ) /(277)}]

where H(h*,7) = —0?h* /072 is given in (3.3) and 7 solves Oh* /01 = 0 in (3.1). The result-
ing estimators by maximizing (3.2) give extended restricted maximum likelihood (REML)
ones (Ha et al., 2001; Lee et al., 2006).

3.2. Prediction of random effects and their intervals

Lee and Ha (2010) proposed how to construct a proper prediction interval based on
h-likelihood for Poisson random-effect models. Thus we show that such interval can be
extended to correlated frailty models (2.1). Following Ha et al. (2001) and Ha and Lee
(2003), the asymptotic covariance matrix of B and U — v is the inverse of Hessian matrix,
H = H(h*,7) = —0%h* /072, without nuisance parameters Ao, given by

(3.3)

g OPh)0B2 9Ph)opov _ (XTWEX  XTW'Z
=\ jovop 02w jon? ) T\ ZTWrx ZTWrZ+R

where X is the n X p matrix whose ith row vector is zT Z is the n x ¢* group indicator

matrix whose ith row vector is z;, W* is the n x n symmetrlc matrix given in Appendix 2

ij
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of Ha and Lee (2003) and R = BD {—0%(5;/0v?} is the ¢* x ¢* block diagonal matrix. Here
q* = 2q.

Let v be random effects. The bottom right-hand corner of H~! in (3.3) gives a variance
of ¥ — v, given by

var(v —v) = {(Z"W*Z + R) — (ZTW*X)(XTVV*X)—l(XTW*Z)}’1 . (3.4)

Following Lee and Ha (2010), we can show that the variance (3.4) also becomes an ap-
proximation of conditional mean-square error of prediction (CMSEP) by Booth and Hobert
(1998). Thus we can construct the prediction interval for random effects as follows. The
95% h-likelihood prediction intervals for random effects v (i = 1,--+ ,¢;k = 0,1) under
asymptotic normality of the estimators, are given by

i)\ik +1.96 x SE(i}\m — 'Uik), (35)

where U;; is obtained from (3.1) and SE(v;x — vi) = +/var(v; — vik) is the estimated
standard error obtained from (3.4). Note that ¥ ~ E(v|y,d) (Lee and Nelder, 1996; Vaida
and Xu, 2000). For the prediction of random effects, Vaida and Xu (2000) used empirical
Bayes (EB) method based on conditional posterior distribution of random effects v given
(y,0), leading to

var(v — v) & (=0h*/ov*) "t = (ZTW*Z + U) ™. (3.6)

Thus, the corresponding 95% EB prediction intervals are constructed from (3.5) with (3.6).
However, the EB method can underestimate the variance of v — v because it ignores covari-
ance term between ¥ — v and f in (3.3), leading to a misleading prediction interval (Ha,
2008b; Lee and Ha, 2010).

4. Simulation study

We conducted numerical studies, based upon 500 replications of simulated data, in order to
evaluate the performance of the proposed method. For comparison of prediction of random
effect, we include the EB method (Vaida and Xu, 2000).

Following the setups of Vaida and Xwu’s (2000) data analysis for a multi-center clinical
trial, we generate data from the correlated frailty model (2.1) with two covariates in (2.2):

Xij (t|vio, vi1) = Xo(t) exp(ni;) with ni; = vio + (81 + vi1)Tij1 + Bazijo- (4.1)
Here we assume A\g(t) = 1, 1 = —0.5, B2 = 0.5, and 03 = 0? = 1 with p = —0.5
(i.e. 091 = —0.5). Though not reported here, we found the similar results for p = 0.5.

The binary covariates z;;; and z;j2 are each generated from a Bernoulli distribution with
success probability 0.5. In Vaida and Xwu's (2000) data the number of centers is 31 and
the average number of patients per center is 19. Thus, we consider the following sample
sizes: n = 1, n; = 150,600, 1200 with (g,n;) = (30, 5), (30, 20), (60, 20). The censoring
times are generated from an exponential distribution with parameter empirically determined
to achieve approximately the right censoring rate, around 15%. For the model fitting and
computation we used SAS/IML.
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The simulation results for h-likelihood estimates of frailty parameters (03,03, p) are sum-
marized in Table 4.1. Overall, the estimates perform well. The bias and variations (i.e. SD
and MSE) are decreased as sample size n increases. Even though unreported, the estimates
for fixed effects (31, 82) also work well in all cases considered.

Table 4.1 Simulations results for h-likelihood estimators of frailty parameters

N 52 52 o1
Bias  SD  MSE Bias  SD _ MSE Bias  SD MSE
150 0.027 0525 0.276 0.079 0.766 0.593 20.009  0.461 0.213
600  0.011 0302 0.091 0.027 0.342  0.118 -0.008  0.247 0.061
1200 0.010 0.201  0.041 0.006  0.209  0.044 0.003  0.167 0.028

Note: The simulation is conducted with 500 replications for the correlated frailty models parassuming
the true frailty parameters (Jg, U%, o01)=(1,1,—0.5), with three sample sizes nzzgzlni:m(), 600, 1200
with (¢, n;)=(30, 5), (30, 20), (60, 20). SD and MSE, standard deviation and mean squared error of
estimates over 500 simulations.

Figure 4.1 shows the coverage probabilities of the nominal 95% prediction intervals for all
random effects (v};s) in model (4.1). The h-likelihood (HL) intervals are overall better than
the EB intervals in terms of maintaining the nominal level. In particular, the HL intervals
preserve well the nominal level, except for a sample size, n = 150 with (¢, n;) = (30, 5), with
a small center size compared to the number of centers, wheras the EB intervals are not. The
results about vj,s are similar to those of v/;s (not shown).
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Figure 4.1 Simulation results for coverage probabilities of the nominal 95% (dotted line)
(a) EB and (b) HL (h-likelihood) prediction intervals of all random effects (v},’s) in correlated
frailty models; (30, 5), (30, 20) and (60, 20) in x-label indicate the corresponding sample size (g, n;);
q is the number of centers and n; is the center size.

Furthermore, we also conducted a numerical study in order to demonstrate how to investi-
gate graphically the heterogeneity of random effects (i.e. random baseline risk and random
treatment effects) over centers. For this, we use a simulated data set which is generated
from model (4.1) under a sample size n=600 with center size n;=20 for all center 7 and a

smaller variance (6 = o7 = 0.1) or a larger variance (05 = o7 = 1). Notice that the size of
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variance may be proportional to that of heterogeneity across centers. We thus considered
the four combinations, (¢2,0%) = (0.1, 0.1), (0.1, 1), (1, 0.1) and (1, 1). The remaining
simulation schemes are the same as before. To save space, we report the results of only a
case, (02,07) = (0.1, 1). As expected, Figure 4.2 shows that the random baseline risk (v},s)
are homogeneous over centers, whereas the random treatment effect (v};s) are substantially
heterogeneous across centers. In particular, all intervals of v;o in Figure 2 (a) include zero,
indicating to homogeneity over centers. However, many intervals (e.g. center number 1, 3
and 4) of v;; in Figure 2 (b) do not include zero, indicating that the random treatment effect
is changed over centers, that is, there is the random treatment-by-center interaction in this
data set. The results suggest that care is necessary in assessing the main treatment effect
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Figure 4.2 Random effects and their 95% prediction intervals using h-likelihood, based on a simulated
data set generated from a correlated frailty model assuming (O'g, 0’%7 p) = (0.1, 1, -0.5)
and (q, n;)= (30, 20). (a) random baseline risk (vg); (b) random treatment effect (v1).

5. Discussion

We have shown that h-likelihood gives a unified framework for both estimation of pa-
rameters and prediction of random effects for correlated frailty models. In particular, we
demonstrated via a numerical study that the proposed method is useful in investigating
graphically the heterogeneity of treatment effect in multi-center trial. However, some prac-
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tical study (e.g. Vaida and Xu, 2000; Legrand et al., 2005) using a real dataset from a
multi-center clinical trialis is required as a further study.

The simulation results in Section 4 show that our procedure overall performs well. How-
ever, another further study is necessary in developing a proper prediction interval in multi-
center trial with a smaller center size compared to the number of centers.
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