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Abstract

We investigate some statistical properties of several difference-based error variance
estimators in nonparametric regression model. Most of existing difference-based meth-
ods are developed under asymptotical properties. Our focus is on the exact form
of mean and variance for the lag-k difference-based estimator and the second-order
difference-based estimator in a finite sample size. Our approach can be extended to
Tong’s estimator (2005) and be helpful to obtain optimal k.

Keywords: Difference-based estimator, error variance, Lipschitz condition, nonpara-
metric regression, Taylor formula.

1. Introduction

In this paper we consider a particular aspect of the statistical properties for some
difference-based error variance estimators in nonparametric regression model with a fi-
nite sample size.

The most basic form of our model is

Yi = g(xi) + εi (1.1)

where g is an unknown mean function and the error εi’s are independent and identically
distributed random variables with zero mean and variance σ2. We assume that the design
points xi’s are equally spaced.

There are two types of estimating the error variance. One is that the residual sum of
squares method first estimates the mean function g(·) (Park, 2004, 2008, 2009; Wahba,
1990; Hall and Carroll, 1989; Carter and Eagleson 1992; Neumann, 1994). The other is
that the estimation of the error variance σ2 which uses differences to remove trend in the
mean function has attracted a great deal of attention; see for example Rice (1984), Gasser
et al. (1986), Hall et al. (1990), Dette et al. (1998), and Tong and Wang (2005), among
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others. So far most of existing difference-based variance estimators have been developed
under asymptotical properties. That is, the mean function g is smooth and a sample size

is so large. Then the effect of g on the asymptotic mean squared error of the estimator σ̂2

of σ2 could be ignored. In finite sample cases, however, the bias does depend on the mean
function.

Therefore we focus on some statistical properties of several difference-based estimators
to estimate an error variance in a nonparametric regression which both satisfies Lipschitz
condition and has a small sample size.

Rice (1984) proposed the first-order difference based estimator

σ̂2
R =

1

2(n− 1)

n∑
i=2

(Yi − Yi−1)
2
.

Also Rice’s estimator uses differences of all consecutive observations. A lag-k Rice estimator

σ̂2
R(k) is defined as

σ̂2
R(k) =

1

2(n− k)

n∑
i=1+k

(Yi − Yi−k)
2
. (1.2)

Gasser et al. (1986) proposed the second-order difference-based estimator

σ̂2
GSJ =

1

n− 2

n−1∑
i=2

c2i ε̂
2
i

where ε̂i is the difference between yi and the value at xi of the line joining (xi−1, yi−1) and

(xi+1, yi+1). The coefficients ci are chosen such that E
(
c2i ε̂

2
i

)
= σ2 for all i when g is linear.

For equidistant design points, σ̂2
GSJ reduces to

σ̂2
GSJ =

2

3(n− 2)

n−1∑
i=2

(0.5Yi−1 − Yi + 0.5Yi+1)2 (1.3)

Hall et al. (1990) introduced difference based estimators via a difference sequence
{di}i=−m1,...,m2

with
∑m2

j=−m1
dj = 0,

∑m2

j=−m1
d2
j = 1 and d−m1

, dm2
6= 0,

σ̂2
HKT (m) =

1

n− r

n−m2∑
i=m1+1

 m2∑
j=−m1

dkYk+1

2

. (1.4)

Here m1 and m2 are non-negative integers and m = m1 + m2 denotes the order of the
variance estimator.

Recently, Müller et al. (2003) and Tong and Wang (2005) proposed two new types of
difference-based estimators for the error variance σ2. Such a difference-based error variance
estimator had been studied under asymptotical properties. In this article, we study the

statistical properties of the lag-k Rice estimator σ̂2
R(k) and σ̂2

GSJ which are the basic form
of difference based error variance with a finite sample.
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In Section 2 we consider σ̂2
R(k) and σ̂2

GSJ on Lipschitz condition which the mean function
g satisfies. We explore some statistical properties of the estimators with a finite sample size
in Section 3. A small simulation study is conducted for examining the finite sample behavior
of the proposed variance estimators in Section 4. Section 5 provides a brief discussion and
further work. Some proofs of the technical results are deferred to Appendix.

2. Difference-based estimator under Lipschitz condition

In nonparametric regression model (1.1), let us consider that g(x) is a mean function
which satisfies Lipschitz condition,

|g(x)− g(y)| ≤ c|x− y| (2.1)

for some constant value c >0.
When g(·) ∈ Lip[0, 1] and xi = i/n, which is denoted by the mean function g satisfying a

Lipschitz condition on the support [0, 1], a lag-k Rice estimator (1984) is

σ̂2
R(k) =

1

2(n− k)

n∑
i=1+k

(Yi − Yi−k)
2

=
1

2(n− k)

n∑
i=1+k

(gi − gi−k)
2

+
1

(n− k)

n∑
i=1+k

(gi − gi−k) (εi − εi−k)

+
1

2(n− k)

n∑
i=1+k

(εi − εi−k)
2

=
k2

2n2(n− k)

n∑
i=1+k

c2i(k) +
k

n(n− k)

n∑
i=1+k

ci(k) (εi − εi−k)

+
1

2(n− k)

n∑
i=1+k

(εi − εi−k)
2

where k = 1, · · · , n− 1, gi = g(xi) and (gi − gi−k) = ci(k)k/n.
Under the same condition, Gasser et al. (1986) proposed the estimator,

σ̂2
GSJ =

2

3(n− 2)

n−1∑
i=2

(
1

2
Yi−1 − Yi +

1

2
Yi+1

)2

=
1

6(n− 2)

n−1∑
i=2

[(gi+1 − gi)− (gi − gi−1) + (εi+1 − εi)− (εi − εi−1)]
2

=
1

6(n− 2)

n−1∑
i=2

{
1

n2

[
ci+1(1) − ci(1)

]2
+

2

n

[
ci+1(1) − ci(1)

]
[(εi+1 − εi)− (εi − εi−1)]

+ [(εi+1 − εi)− (εi − εi−1)]
2
}
.
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3. Statistical properties

Now we obtain mean, variance, and mean squared error (MSE) of the above estimators
from Theorem 3.1.
Theorem 3.1 When g(·) ∈ Lip[0, 1] and xi = i/n, the statistical properties of Rice’s

estimator and GSJ’s are the following;

(i) Rice’s estimator

E
(
σ̂2
R(k)

)
= σ2 +

k2

2n2(n− k)

∑n
i=1+k c

2
i(k),

V ar
(
σ̂2
R(k)

)
=

2σ2k2

n2(n− k)2

(∑n
i=1+k c

2
i(k) −

∑n−k
i=1+k ci(k)ci+k(k)

)
+

(3n− 4k)σ4

(n− k)2
,

mse
(
σ̂2
R(k)

)
= Bias2

(
σ̂2
R(k)

)
+ V ar

(
σ̂2
R(k)

)
,

(ii) GSJ’s estimator

E
(
σ̂2
GSJ

)
= σ2 +

1

6n2(n− 2)

∑n−1
i=2

(
ci+1(1) − 2ci(1) + ci−1(1)

)2
,

V ar(σ̂2
GSJ) =

σ2

9n2(n− 2)2
(A+B) +

σ4

3(n− 2)
,

mse
(
σ̂2
GSJ

)
= Bias2

(
σ̂2
GSJ

)
+ V ar

(
σ̂2
GSJ

)
,

where A =
∑n−3

i=3 (ci+1 − 2ci + ci−1)2, B = c22 + (c3 − 2c2)2 + (cn−2 − 2cn−1)2 + c2n−1 and
ci = ci+1(1) − ci(1).

Therefore, the bias of a lag-k Rice estimator is always positive and may get bigger as k
increasing and positive is that of the second-order difference based estimator which depends
on the shape of the function g.

To compare the statistical properties of both of the estimators, two simple functions which
satisfy Lipschitz condition are suggested as linear and quadratic functions. These results are
summarized in Corollaries 3.1 and 3.2, respectively.

Corollary 3.1 If g(x) = ax (linear), then the statistical properties are

(i) Rice’s estimator

E
(
σ̂2
R(k)

)
= σ2 +

a2k2

2n2

V ar
(
σ̂2
R(k)

)
=

2a2σ2k3

n2(n− k)2
+

(3n− 4k)σ4

(n− k)2

mse
(
σ̂2
R(k)

)
= Bias2

(
σ̂2
R(k)

)
+ V ar

(
σ̂2
R(k)

)
=
a4k4

4n4
+

3σ4

n− k
+

2a2σ2k

n2(n− k)2

(
k +

σn
√

2a

)(
k −

σn
√

2a

)
.

(ii) GSJ’s estimator
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E
(
σ̂2
GSJ

)
= σ2

V ar
(
σ̂2
GSJ

)
=

σ4

3(n− 2)

mse
(
σ̂2
GSJ

)
= V ar

(
σ̂2
GSJ

)
.

We note that for n and a fixed, the optimal k which minimizes mse
(
σ̂2
R(k)

)
is always one.

The Rice’ estimator is biased but GSJ’s estimator unbiased and the MSE of the lag-k is
larger than that of GSJ’s.

Corollary 3.2 If g(x) = ax2 (quadratic), then the statistical properties are

(i) Rice’s estimator

E
(
σ̂2
R(k)

)
=

a2k2

2n4(n− k)

n∑
i=1+k

(2i− k)2 + σ2

V ar
(
σ̂2
R(k)

)
=

2k2σ2

n2(n− k)2

(
a2

n2

n∑
i=1+k

(2i− k)2−
a2

n2

n−k∑
i=1+k

(2i− k)(2i+ k)

)
+

(3n− 4k)σ4

(n− k)2

mse
(
σ̂2
R(k)

)
= Bias2

(
σ̂2
R(k)

)
+ V ar

(
σ̂2
R(k)

)
(ii) GSJ’s estimator

E
(
σ̂2
GSJ

)
= σ2

V ar(σ̂2
GSJ) =

16a2σ2

9n4(n− 2)2
+

σ4

3(n− 2)

mse
(
σ̂2
GSJ

)
= V ar

(
σ̂2
GSJ

)
.

where ci = ci+1(1) − ci(1) = 2a/n.

The proofs of Corollary 3.1 and Corollary 3.2 are summarized by Appendix. In the quadratic
form of the mean function, the results of the bias and MSE are similar to those of the linear
function.

Suppose that g(x) has a bounded second derivative. Then by Taylor’s formula, g(x) can
be locally approximated by the form

g(x) ≈ g(x0) + (x− x0)g′(x0) +
1

2
(x− x0)2g′′(x0)

= ax2 + bx+ c.

By Lipschitz condition, the following corollary is obtained.
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Corollary 3.3 If g(x) has a second bounded derivative, then the results are

(i) Rice’s estimator

E
(
σ̂2
R(k)

)
≈ σ2 +

k2

2n2(n− k)

[
a2

n2

n∑
i=1+k

(2i− k)2 +
2ab

n

n∑
i=1+k

(2i− k) + (n− k)b2

]
,

V ar(σ̂2
R(k)) ≈

2σ2k2

n2(n− k)2

(
a2

n2

n∑
i=1+k

(2i− k)2 +
2ab

n

n∑
i=1+k

(2i− k)

−
a2

n2

n−k∑
i=1+k

(2i− k)(2i+ k)−
4ab

n2

n−k∑
i=1+k

i+ kb2

)
+

(3n− 4k)σ4

(n− k)2
,

for a and b are any value,

(ii) GSJ’s estimator

E
(
σ̂2
GSJ

)
≈ σ2,

for a and b are any value, and

V ar
(
σ̂2
GSJ

)
≈

16a2σ2

9n4(n− 2)2
+

σ4

3(n− 2)
,

for a, b > 0.

The proofs of Corollary 3.3 are summarized by Appendix. It is not easy that the compar-
ison of both of the estimators are analytically achieved in a finite sample size. However, the
numerical approach to compare them is possible for a, b fixed.

4. Simulation study

We perform a small simulation to compare the analytical and numerical results of some
Rice’s estimators and GSJ’s. To do this, we consider two functions, the quadratic function
and the cosine, for two sample size, xi = i/n and εi ∼ N(0, σ2). For each simulation setting,
we generate observations and calculate some statistical properties. We repeat this process
100 times and the results are summarized in Table 4.1 and Table 4.2.

From Table 4.1 and Table 4.2, the biases are larger as increasing a lag-k for Rice’s. In
these simulation settings, GSJ’s estimator has the smaller MSEs than Rice’s.

5. Discussion and further work

In this paper we obtain the exact form of some statistical properties for two difference-
based error variance estimators in nonparametric regression model. This is meaningful,
because most of difference-based methods have been developed under asymptotical methods.
And even if there is the limitation of Rice’s estimator and GSJ’s estimator, most of existing
difference-based estimators are traced by them.
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Table 4.1 Summary for n = 30

lag-1 lag-3 GSJ
analytic numeric analytic numeric analytic numeric

g(x) = (x− 0.5)2

σ = 0.02
Biased 1.74e-004 3.89e-008 1.35e-003 1.82e-006 8.23e-007 4.59e-008

Variance 4.50e-008 1.27e-008 7.32e-007 4.82e-008 1.91e-009 3.58e-009
mse 7.51e-008 1.27e-008 2.56e-006 4.82e-008 1.91e-009 3.58e-009

σ = 0.1
Biased 1.74e-004 6.87e-006 1.35e-003 9.54e-006 8.23e-007 3.04e-005

Variance 1.09e-005 6.79e-006 2.86e-005 8.15e-006 1.19e-006 2.26e-006
mse 1.10e-005 6.79e-006 3.04e-005 8.15e-006 1.19e-006 2.26e-006

g(x) = cos(4πx)

σ = 0.02
Biased 4.46e-002 1.98e-003 3.73e-001 1.39e-001 2.34e-003 9.10e-007

Variance 6.37e-006 2.30e-007 4.18e-004 1.38e-005 1.91e-009 5.34e-009
mse 2.00e-003 4.15e-006 1.39e-001 1.93e-002 5.49e-006 5.34e-009

σ = 0.1
Biased 4.46e-002 1.99e-003 3.73e-001 1.41e-001 2.34e-003 1.96e-005

Variance 1.69e-004 1.76e-005 1.05e-002 4.47e-004 1.19e-006 3.81e-006
mse 2.16e-003 2.16e-005 1.50e-001 2.03e-002 6.68e-006 3.81e-006

Table 4.2 Summary for n = 15

lag-1 lag-3 GSJ
analytic numeric analytic numeric analytic numeric

g(x) = (x− 0.5)2

σ = 0.02
Biased 6.52e-004 4.33e-007 4.33e-003 1.88e-005 1.32e-005 4.94e-008

Variance 2.55e-007 4.20e-008 4.97e-006 4.75e-007 4.10e-009 7.88e-009
mse 6.80e-007 4.20e-008 2.37e-005 4.75e-007 4.28e-009 7.88e-009

σ = 0.1
Biased 6.52e-004 1.36e-005 4.33e-003 4.73e-005 1.32e-005 3.26e-005

Variance 2.65e-005 1.37e-005 1.46e-004 2.73e-005 2.56e-006 4.74e-006
mse 2.69e-005 1.37e-005 1.65e-004 2.73e-005 2.56e-006 4.74e-006

g(x) = cos(4πx)

σ = 0.02
Biased 1.73e-001 3.01e-002 9.44e-001 8.95e-001 3.40e-002 2.82e-004

Variance 9.60e-005 7.22e-006 2.49e-003 2.48e-004 4.10e-009 1.77e-007
mse 3.01e-002 9.13e-004 8.94e-001 8.01e-001 1.16e-003 2.57e-007

σ = 0.1
Biased 1.73e-001 3.01e-002 9.44e-001 8.94e-001 3.40e-002 1.50e-004

Variance 2.42e-003 1.77e-004 6.23e-002 4.62e-003 2.56e-006 1.17e-005
mse 3.25e-002 1.09e-003 9.54e-001 8.05e-001 1.16e-003 1.18e-005

Tong and Wang (2005) proposed a least square estimator to estimate the error variance
as the intercept in a simple linear regression which motivated from the expectation of Rice’s
lag-k estimator. By taking expectation of the Rice estimator, the form is as

E
[
σ̂2
R(k)

]
≈ σ2 +

k2

n2
J, 1 ≤ k ≤ m = o(n),

where J =
1

2

∫ 1

0
g′(x)2dx. By treating the above expectation as a simple linear regression

model with a regressor dk = k2/n2, they considered the following model,

sk = σ2 + βdk + ek, k = 1, 2, ...,m,

and estimated σ2 as the intercept, where sk =
∑

(yi−yi−k)2/2(n−k) and ek ’s are dependent
random variables. Under asymptotical properties, the proposed simple model is working
well. In a finite sample, however, the simple regression is not the exact form. That is, the
coefficient β is not constant but depends on a lag-k or the regressor should be changed.
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Further research is necessary to analysis Tong’s estimator (2005) which used a least square
method using the assumption of Lipschitz condition for the mean function and Taylor expan-
sion. And the estimator of the error variance and the optimal lag-k of the Tong’s estimator
are investigated.

Appendix

Proof of Theorem 3.1
The variance of Rice’s estimator is the form as

V ar
[
σ̂2
R(k)

]
= V ar

[
k2

2n2(n− k)

n∑
i=1+k

c2i(k) +
k

n(n− k)

n∑
i=1+k

ci(k) (εi − εi−k)

+
1

2(n− k)

n∑
i=1+k

(εi − εi−k)
2

]

= V ar

[
k

n(n− k)

n∑
i=1+k

ci(k) (εi − εi−k) +
1

2(n− k)

n∑
i=1+k

(εi − εi−k)
2

]

= V ar

[
k

n(n− k)

n∑
i=1+k

ci(k) (εi − εi−k)

]
+ V ar

[
1

2(n− k)

n∑
i=1+k

(εi − εi−k)
2

]

+ Cov

[
k

n(n− k)

n∑
i=1+k

ci(k) (εi − εi−k) ,
1

2(n− k)

n∑
i=1+k

(εi − εi−k)
2

]
.

The term of covariance is

Cov

[
k

n(n− k)

n∑
i=1+k

ci(k) (εi − εi−k) ,
1

2(n− k)

n∑
i=1+k

(εi − εi−k)
2

]
= 0

by E(εi) = 0, E(ε3i ) = 0, ∀i and E(εiεj) = 0, E(ε2i εj) = 0, ∀i 6= j.
Therefore,

V ar
[
σ̂2
R(k)

]
= 2σ2 k2

n2(n− k)2

(
n∑

i=1+k

c2i(k) −
n−k∑

i=1+k

ci(k)ci+k(k)

)
+ σ4 (3n− 4k)

(n− k)2
.

That of GSJ’s estimator is

V ar
(
σ̂2
GSJ

)
= V ar

{
1

3n(n− 2)

n−1∑
i=2

[
ci+1(1) − ci(1)

]
[(εi+1 − εi)− (εi − εi−1)]

+
1

6(n− 2)

n−1∑
i=2

[(εi+1 − εi)− (εi − εi−1)]
2

}

= V ar

{
1

3n(n− 2)

n−1∑
i=2

[
ci+1(1) − ci(1)

]
[(εi+1 − εi)− (εi − εi−1)]

}



On statistical properties of some difference-based error variance estimators in nonparametric regression 583

+ V ar

{
1

6(n− 2)

n−1∑
i=2

[(εi+1 − εi)− (εi − εi−1)]
2

}
+ Cov (A,B) ,

where

A =

n−1∑
i=2

[
ci+1(1) − ci(1)

]
[(εi+1 − εi)− (εi − εi−1)] /3n(n− 2)

and

B =

n−1∑
i=2

[(εi+1 − εi)− (εi − εi−1)]
2
/6(n− 2).

V ar

{
1

3n(n− 2)

n−1∑
i=2

[
ci+1(1) − ci(1)

]
[(εi+1 − εi)− (εi − εi−1)]

}

=
σ2

9n2(n− 2)2

[
c22 + (c3 − 2c2)2 +

n−3∑
i=3

(ci+1 − 2ci + ci−1)2 + (cn−2 − 2cn−1)2 + c2n−1

]
,

for ci = ci+1(1) − ci(1),

V ar

{
1

6(n− 2)

n−1∑
i=2

[(εi+1 − εi)− (εi − εi−1)]
2

}

=
1

36(n− 2)2
V ar

{
n−1∑
i=2

[εi+1 − 2εi + εi−1)]
2

}

=
σ4

3(n− 2)
,

and

Cov

{
1

3n(n− 2)

n−1∑
i=2

[
ci+1(1) − ci(1)

]
[(εi+1 − εi)− (εi − εi−1)] ,

1

6(n− 2)

n−1∑
i=2

[(εi+1 − εi)− (εi − εi−1)]
2

}
= 0

by E(εi) = 0, E(ε3i ) = 0, ∀i and E(εiεj) = 0, E(ε2i εj) = 0, ∀i 6= j.
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Therefore

V ar
(
σ̂2
GSJ

)
=

σ2

9n2(n− 2)2

[
c22+(c3−2c2)2+

n−3∑
i=3

(ci+1 − 2ci + ci−1)2 + (cn−2 − 2cn−1)2 + c2n−1

]

+
σ4

3(n− 2)
.

Proof of Corollary 3.1
When g(x) = ax, we have the following;

g(xi)− g(xi−k) = ci(k)(xi − xi−k)

a
i

n
− a

i− k
n

= ci(k)

(
i

n
−
i− k
n

)
a = ci(k)

∵ ci(k) = a,

E
(
σ̂2
R(k)

)
= σ2 +

k2

2n2(n− k)

n∑
i=1+k

c2i(k) = σ2 +
a2k2

2n2
,

V ar
(
σ̂2
R(k)

)
=

2a2σ2k3

n2(n− k)2
+

(3n− 4k)σ4

(n− k)2
,

and

mse
(
σ̂2
R(k)

)
= Bias2

(
σ̂2
R(k)

)
+ V ar

(
σ̂2
R(k)

)
=
a4k4

4n4
+

2a2σ2k3

n2(n− k)2
+

(3n− 4k)σ4

(n− k)2

=
a4k4

4n4
+

2a2σ2k3

n2(n− k)2
+

3σ4

n− k
−

kσ4

(n− k)2

=
a4k4

4n4
+

3σ4

n− k
+

2a2σ2k

n2(n− k)2

(
k2 −

σ2n2

2a2

)

=
a4k4

4n4
+

3σ4

n− k
+

2a2σ2k

n2(n− k)2

(
k +

σn
√

2a

)(
k −

σn
√

2a

)
.

The proof of those of GSJ’s estimator is omitted as it is straightforward.

Proof of Corollary 3.2
When g(x) = ax2, we have the following;
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g(xi)− g(xi−k) = ci(k)(xi − xi−k)

a
i2

n2
− a

(i− k)2

n2
= ci(k)

(
i

n
−
i− k
n

)
n

k

(
a
i2

n2
− a

(i− k)2

n2

)
= ci(k)

a
2i− k
n

= ci(k)

∵ ci(k) = a
2i− k
n

.

(i) Rice’s estimator

E
(
σ̂2
R(k)

)
= σ2 +

k2

2n2(n− k)

n∑
i=1+k

c2i(k) = σ2 +
a2k2

2n4(n− k)

n∑
i=1+k

(2i− k)2,

and

V ar
(
σ̂2
R(k)

)
= 2σ2 k2

n2(n− k)2

(
n∑

i=1+k

c2i(k) −
n−k∑

i=1+k

ci(k)ci+k(k)

)
+

(3n− 4k)σ4

(n− k)2

= 2σ2 a2k2

n4(n− k)2

(
n∑

i=1+k

(2i− k)2 −
n−k∑

i=1+k

(2i− k)(2i+ k)

)
+

(3n− 4k)σ4

(n− k)2
,

where

n∑
i=1+k

(2i− k)2 =

n∑
i=1

(2i− k)2 −
k∑

i=1

(2i− k)2

=
2

3
n(n+ 1)(2n+ 1)− 2n(n+ 1)k + nk2 −

2

3
k(k + 1)(2k + 1)

+ 2k(k + 1)k − k3,

and

n∑
i=1+k

(2i− k) =

n∑
i=1

(2i− k)−
k∑

i=1

(2i− k)

= n(n+ 1)− nk − k(k + 1) + k2.

(ii) GSJ’s estimator
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V ar(σ̂2
GSJ)

=
σ2

9n2(n− 2)2

[
c22 + (c3 − 2c2)2 +

n−3∑
i=3

(ci+1 − 2ci + ci−1)2 + (cn−2 − 2cn−1)2 + c2n−1

]

+
σ4

3(n− 2)

=
16a2σ2

9n4(n− 2)2
+

σ4

3(n− 2)
,

where ci = ci+1(1) − ci(1) = 2a/n.

Proof of Corollary 3.3
If g(x) is a quadratic function, then

g(xi)− g(xi−k) = ci(k)(xi − xi−k)

ax2
i + bxi − ax2

i−k − bxi ≈ ci(k)(xi − xi−k)

a
i2

n2
− a

(i− k)2

n2
+ b

i

n
− b

i− k
n
≈ ci(k)

(
i

n
−
i− k
n

)

a
2i− k
n

+ b ≈ ci(k)

∵ ci(k) ≈ a
2i− k
n

+ b

(i) Rice’s estimator

E
(
σ̂2
R(k)

)
= σ2 +

k2

2n2(n− k)

n∑
i=1+k

c2i(k)

≈ σ2 +
k2

2n2(n− k)

[
a2

n2

n∑
i=1+k

(2i− k)2 +
2ab

n

n∑
i=1+k

(2i− k) + (n− k)b2

]
,

and

V ar
(
σ̂2
R(k)

)
=

2σ2k2

n2(n− k)2

(
n∑

i=1+k

c2i(k) −
n−k∑

i=1+k

ci(k)ci+k(k)

)
+

(3n− 4k)σ4

(n− k)2

≈
2σ2k2

n2(n− k)2

(
a2

n2

n∑
i=1+k

(2i− k)2 +
2ab

n

n∑
i=1+k

(2i− k)

−
a2

n2

n−k∑
i=1+k

(2i− k)(2i+ k)−
4ab

n2

n−k∑
i=1+k

i+ kb2

)
+

(3n− 4k)σ4

(n− k)2
,
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(ii) GSJ’s estimator

E
(
σ̂2
GSJ

)
= σ2 +

1

6n2(n− 2)

n−1∑
i=2

[
(ci+1(1) − ci(1))− (ci(1) − ci−1(1))

]2
= σ2 +

1

6n2(n− 2)

n−1∑
i=2

(
ci+1(1) − 2ci(1) + ci−1(1)

)2
≈ σ2 +

1

6n2(n− 2)

n−1∑
i=2

[
a

2i+ 1

n
+ b− 2

(
a

2i− 1

n
+ b

)
+ a

2i− 3

n
+ b

]2

= σ2,

the proof of the variance is omitted as it is straightforward.
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