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Abstract

In this article, we propose an estimation procedure for the treatment effect for the
right censored data. We apply the least square method for deriving the estimation
equation and obtain an explicit formula for an estimation. Then we consider some
asymptotic properties with derivation of the asymptotic normality for the estimate.
Finally we illustrate our procedure with an example and discuss some interesting aspects
for the estimation procedure.

Keywords: Convolution, least square method, nonparametric method, two-sample prob-
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1. Introduction

For the comparison study for a newly developed treatment over a control or between two
treatments, one may take a test whether there exists any difference between them assuming
a suitable model. If any, then one may be interested in measuring the difference. In the
survival analysis, the most famous and widely used model is the proportional hazards model
(Cox, 1972). Since the proportional hazards model defines the proportionality between two
hazard functions, it would be inappropriate to describe the difference between two treatments
directly. Then a well-known and useful one for this purpose would be the location translation
model. In short, the location translation model assumes that the difference between two
quantile points keeps constant over time. Then the difference between two quantile points
can be considered as the difference between two treatments and has been called as the
treatment effect.

The study on the estimation of the treatment effect for the two-sample problem based on
the right censored data has been one of the research topics for a long time with the estimation
for the mean-life in the survival analysis. Many authors have reported their research results
with some drawback or drawbacks which may be inevitable because of the possibility of
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censoring of the largest observation. We review some important results in the sequel and
note that they are all based on the location translation model. Akritas (1986) proposed an
estimate as a median of the convolution (Feller, 1971) of two Kaplan-Meier estimates (Kaplan
and Meier, 1958). However a simple median of the convolution may lack the consistency
since the Kaplan-Meier estimate should be incomplete when the largest observation is right
censored. In order to overcome this inconsistency, Meng et al. (1991) and Bassiakos et al.
(1991) have strived to modify Akritas’ estimate and proposed new estimates by introducing
some artificial auxiliary variable, which made the procedures and forms of estimates very
complicated and required additional information for the censoring distributions, which are
of no interest in our concern. Tsiatis (1990) considered to use the linear rank statistics which
may be used for testing the equality between two distributions or survival functions under the
two-sample problem setting as the estimation functions. The resulting estimating procedure
requires an iterative computation process and so the estimate does not have a closed form.
Also Park and Park (1995) considered an estimate by integrating the difference between two
quantiles. However the estimate may incur some efficiency loss by deleting or omitting some
observations of the data. Zhou and Liang (2005) considered a procedure with assuming the
distribution of control group is known but that of treatment group, unknown. However it
is difficult to assume a specific distribution or survival function for the survival data. Thus
the Zhou and Liang’s procedure has some intrinsic drawback for the real application.

In this study, we consider to propose a new nonparametric estimate procedure which
is simple in calculation and easy to use. In the nest section, we obtain a nonparametric
estimate by applying the least square method. In section 3, we discuss some asymptotic
properties for the estimate. In section 4, we illustrate our estimate with an example and
discuss some interesting aspects for the estimation procedure as concluding remarks.

2. Least square estimate

We consider the following linear model.

Yi = β0 + β1xi + εi, i = 1, · · · , n. (2.1)

The covariate xi takes value 0 or 1 according as the nonnegative response variable Yi
comes from the control or treatment group. Without loss of generality, we assume that the
first n1, n1 < n, number of observations are assigned to the control group and the rest
n2 = n−n1 number of observations, assigned to the treatment group. Also we assume that
the distribution F of the error term εi is unknown but continuous with mean 0 and finite
variance, which is also unknown. Then we have the following results:

E(Yi) = β0, i = 1, · · · , n1

E(Yi) = β0 + β1, i = n1 + 1, · · · , n.

Therefore β1 can be considered as the location translation parameter and should take on
the role of the treatment effect. Based on this two-sample problem setting, a lot of research
results for the estimation of β1 have been proposed yet using the parametric and nonpara-
metric methods when no censoring is involved. However in this study, we will consider the
possibility of right censoring for Yi. For this let C1, · · · , Cn be the censoring random vari-
ables independent of Y1, · · · , Yn with censoring distributions G1 for i = 1, · · · , n1 and G2
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for n1 + 1 ≤ i ≤ n. Then we only can observe that for each i, i = 1, · · · , n

Ti = min {Yi, Ci} and δi = I (Yi ≤ Ci) , (2.2)

where I(·) is an indicator function. Thus if Ti is censored then δi = 0 and uncensored,
δi = 1. Under this random censoring scheme, by considering β0 as a nuisance parameter,
one may obtain an estimate of β1 by finding β1 which minimizes the following equation

QM (β0, β1) =

n∑
i=1

(Ti − β0 − β1xi)
2
dFn (Ti − β0 − β1xi) . (2.3)

In (2.3), Fn is the Kaplan-Meier estimate of F based on

T1 − β0 − β1x1, · · · , Tn − β0 − β1xn

and dFn(t) = Fn(t) − Fn(t−) is the jump size of Fn at t. Therefore when δi = 0,
dFn (Ti − β0 − β1xi) = 0 and dFn (Ti − β0 − β1xi) > 0 if δi = 1. This version of the
application of the least square method was initiated by Miller (1976) and requires an itera-
tive procedure for calculation since the value of Fn (Ti − β0 − β1xi) can vary with the values
of β0 and β1. Also one may estimate β1 using the method of Buckley and James (1979) by
introducing the pseudo random variables for the censored observations and minimizing a
similar equation with (2.3). However the use of an iterative procedure for calculation has
been inevitable.

Now we note the following fact about the model (2.1). Under the model (2.1), for any two
observations Yi and Yj , i = 1, · · · , n1 and j = n1 + 1, · · · , n, we see that with the notation
that εij = εj − εi

Yj − Yi = β1 + εij .

We note that the distribution H of the difference Yj−Yi takes β1 as its mean or median since
the distribution of εij should be symmetric about 0. In order to proceed our discussions for
H more concretely, let F1 and F2 be the distribution functions of Yi and Yj , respectively.
From (2.1) and the assumptions introduced up to now, the location translation model holds
for F1 and F2 such as for any real number y,

F2(y) = F1(y − β1).

Also we note that H must be the convolution of F1 and F2 such that for any real number t,
t ∈ (−∞,∞) we have

H(t) = Pr {Yj − Yi ≤ t} =

∫ ∞
0

F2(t+ y)dF1(y).

Let F1n1
and F2n2

be the Kaplan-Meier estimates of F1 and F2 based on (T1, δ1), · · · , (Tn1
, δn1

)
and (Tn1+1, δn1+1), · · · , (Tn, δn), respectively. Then an estimate Hn of H can be obtained
by using the convolution as follows. For any real number t, we have that

Hn(t) =

∫ ∞
0

F2n2(t+ y)dF1n1(y),−∞ < t <∞. (2.4)
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As we already mentioned in the introduction, Akritas(1986) proposed a Hodges-Lehmann
type of estimate by noting that β1 is a median and Hn is an estimate of H. However one
may construct an estimating equation Q which is similar to QM in (2.3) using (2.4) based
on the approach of Miller (1976) as follows.

Q(β1) =

n1∑
i=1

n∑
j=n1+1

(Tj − Ti − β1)
2
dHn(Tj − Ti − β1).

By differentiating Q(β1) with respect to β1, we obtain that

∂Q(β1)

∂β1
= −2

n1∑
i=1

n∑
j=n1+1

(Tj − Ti − β1) dHn(Tj − Ti − β1).

Then by taking ∂Q(β1)/∂β1 = 0, solving it with respect to β1 and putting it β̂1, we may ob-

tain a least square estimate β̂1 of β1. At a first glance, an iterative procedure for calculation
would be also required because the treatment effect β1 is contained in the expression of Hn.
However we will see that any iterative procedure would be unnecessary in the sequel. First
of all, in order to obtain Hn(Tj − Ti − β1) using (2.4), we have to have the Kaplan-Meier
estimates F1n1

and F2n2
based on

(T1, δ1), · · · , (Tn1 , δn1) and (Tn1+1 − β1, δn1+1), · · · , (Tn − β1, δn) (2.5)

or

(T1 + β1, δ1), · · · , (Tn1
+ β1, δn1

) and (Tn1+1, δn1+1), · · · , (Tn, δn). (2.6)

For any given β1, let f1n1
(Ti; δi) and f2n2

(Tj − β1; δj) be the jumps at Ti and Tj − β1 for
F1n1

and F2n2
, which are obtained from (2.5). Also let f1n1

(Ti + β1; δi) and f2n2
(Tj ; δj) be

the jumps at Ti + β1 and Tj for F1n1 and F2n2 , which are obtained from (2.6). Then from
(2.4), we have that

Hn(Tj − Ti − β1) =
∑ ∑

Tl−Tk−β1≤Tj−Ti−β1

f1n1
(Tk; δk)f2n2

(Tl − β1; δl)

or

Hn(Tj − Ti − β1) =
∑ ∑

Tl−Tk−β1≤Tj−Ti−β1

f1n1
(Tk + β1; δk)f2n2

(Tl; δl).

Now we note for all i, i = 1, · · · , n1 that for any given β1

f1n1
(Ti + β1; δi) = f1n1

(Ti; δi)

since the orders of Ti and Ti+β1 are the same among T1, · · · , Tn1
and T1 +β1, · · · , Tn1

+β1.
Also we may conclude the same for Tj−β1 and Tj , j = n1 +1, · · · , n such that for any given
β1

f2n2
(Tj − β1; δj) = f2n2

(Tj ; δj).
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Furthermore this tells us that for any i and j and for any given β1

Hn(Tj − Ti) = Hn(Tj − Ti − β1).

Therefore the least square estimate, β̂1 can be proposed as follow.

β̂1 =
1

Hn(Dn)

n1∑
i=1

n∑
j=n1+1

(Tj − Ti)dHn(Tj − Ti), (2.7)

where Dn = max {Tj − Ti : 1 ≤ i ≤ n1, n1 + 1 ≤ j ≤ n}. We note that any iterative proce-
dure for calculation is not required. This is an advantage of our estimate and the calculation
is also relatively simple.

For obtaining more explicit formular for β̂1 from (2.7), first of all, we note that for any
pair of i and j such that f1n1

(Ti; δi) > 0 and f2n2
(Tj ; δj) > 0, since

Hn(Tj − Ti) =
∑∑

Tl−Tk≤Tj−Ti

f1n1(Tk; δk)f2n2(Tl; δl),

we have that

dHn(Tj − Ti) = f1n1
(Ti)f2n2

(Tj).

Therefore β̂1 can be expressed as

β̂1 =
1

Hn(Dn)

n1∑
i=1

n∑
j=n1+1

(Tj − Ti)f1n1(Ti)f2n2(Tj)

=
1

Hn(Dn)


n1∑
i=1

f1n1
(Ti)

n∑
j=n1+1

Tjf2n(Tj)−
n1∑
i=1

Tif1n1
(Ti)

n∑
j=n1+1

f2n2
(Tj)


=
F1n1

(T 1
(n1))

Hn(Dn)

n∑
j=n1+1

TjdF2n2
(Tj)−

F2n2
(T 2

(n2))

Hn(Dn)

n1∑
i=1

TidF1n1
(Ti), (2.8)

where T i(ni)
is the largest observation for each i, i = 1, 2. If the largest observations, T 1

(n1)

and T 2
(n2) are not censored in both the samples, the expression in (2.8) can be much simpler.

For this case, since F1n1(T 1
(n1)) = F2n2(T 2

(n2)) = Hn(Dn) = 1,

β̂1 =

n∑
j=n1+1

TjdF2n2(Tj)−
n1∑
i=1

TidF1n1(Ti)

= T 2n2 − T 1n1 , say.

In other words, β̂1 implies the difference between the two sample means when both the largest
observations are not censored. Therefore our estimate can be considered as an extension of
the difference between two sample means for the right censored case. Also we note that the
jump size of the Kaplan-Meier estimate is 0 for the censored observation. This means that
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the largest observation when it is censored can not contribute its amount to (2.8). For this
matter, let X be a non-negative random variable with the distribution function F . Then we
note that

E(X) =

∫ ∞
0

xdF (x) =

∫ ∞
0

{1− F (x)} dx. (2.9)

For (2.9), you may refer to Chung (1974). Then in the light of (2.9), we may modify (2.8)
as

β̂1 =
F1n1

(T 1
(n1))

Hn(Dn)

∫ T(n2)

0

{1− F2n2
(x)} dx−

F2n2
(T 2

(n2))

Hn(Dn)

∫ T(n1)

0

{1− F1n1
(x)} dx. (2.10)

Then we note that β̂1 in (2.10) may include the effect of the largest observation even though
it may be censored.

3. Some asymptotic properties for the estimate

In this section, we discuss some asymptotic properties for β̂1. First of all, by assuming
that for each i, i = 1, 2

Fini
(T i(ni)

)→p 1 (3.1)

we see that β̂1 is a consistent estimate of β1 since (3.1) guarantees that Hn(Dn) →p 1,
where→p means the convergence in probability. However when either one of the conditions
in (3.1) is not satisfied, the contamination with any bias in β̂1 would be inevitable. Now we
consider the asymptotic normality for

√
n
(
β̂1 − β1

)
.

For this, for each i, i = 1, 2, let

τi = inf {t : Fi(t) = 1} .

Now we assume that∫ τi

0

[∫ ∞
t

{1− Fi(s)} ds
]2 dFi(t)

{1− Fi(t−)}2 {1−Gi(t−)}
<∞, (3.2)

√
ni

∫ ∞
T i
(ni)

{1− Fi(t)} dt→p 0 as ni →∞ (3.3)

and

√
ni

{
Fini

(T i(ni)
)

Hn(Dn)
− 1

}
→p 0 (3.4)
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Also we assume that

n1/n2 → λ > 0 as n →∞. (3.5)

Theorem 3.1 Under the assumptions (3.2)-(3.5), the distribution of
√
n
(
β̂1 − β1

)
con-

verges in distribution to a normal random variable with mean 0 and variance σ2,

σ2 = (1 + λ−1)

∫ τ1

0

[∫ ∞
t

{1− F1(s)} ds
]2 dF1(t)

{1− F1(t−)}2 {1−G1(t−)}

+(1 + λ)

∫ τ2

0

[∫ ∞
t

{1− F2(s)} ds
]2 dF2(t)

{1− F2(t−)}2 {1−G2(t−)}
.

Proof. In order to prove this theorem, first of all, we note that

β1 =

∫ ∞
0

tdF2(t)−
∫ ∞

0

tdF1(t)

=

∫ ∞
0

{1− F2(t)} dt−
∫ ∞

0

{1− F1(t)} dt.

Then from (2.10), we have that

√
n
(
β̂1 − β1

)
=
√
n

[
F1n1

(T 1
(n1))

Hn(Dn)

∫ T 2
(n2)

0

{1− F2n2
(t)} dt−

∫ ∞
0

{1− F2(t)} dt

]

−
√
n

[
F2n2(T 2

(n2))

Hn(Dn)

∫ T 1
(n1)

0

{1− F1n1
(t)} dt−

∫ ∞
0

{1− F1(t)} dt

]
.

Also we have that

√
n1

[
F2n2(T 2

(n2))

Hn(Dn)

∫ T 1
(n1)

0

{1− F1n1
(t)} dt−

∫ ∞
0

{1− F1(t)} dt

]

= −
F2n2

(T 2
(n2))

Hn(Dn)

∫ T 1
(n1)

0

√
n1 {F1n1

(t)− F1(t)} dt

+
√
n1

{
F2n2(T 2

(n2))

Hn(Dn)
− 1

}∫ T 1
(n1)

0

{1− F1(t)} dt−
√
n1

∫ ∞
T 1
(n1)

{1− F1(t)} dt.

Then using the integration by parts (Shorack and Wellner, 1986), we have that

−
∫ T 1

(n1)

0

√
n1 {F1n1(t)− F1(t)} dt = −

∫ T 1
(n1)

0

{
√
n1

F1n1(t)− F1(t)

1− F1(t)

}
{1− F1(t)} dt

=

∫ T 1
(n1)

0

[∫ ∞
t

{1− F1(s)} ds
]
d

{
√
n1

F1n1
(t)− F1(t)

1− F1(t)

}
.

Thus we see from Gill (1983) and the assumption (3.1) that
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−
∫ T 1

(n1)

0

√
n1 {F1n1

(t)− F1(t)} dt

converges in distribution to a normal random variable with 0 mean variance

∫ τ1

0

[∫ ∞
t

{1− F1(s)} ds
]2 dF1(t)

{1− F1(t)}2 {1−G1(t−)}
.

Thus from the assumptions (3.2)-(3.5) and the Slutsky’s Theorem (Bickel and Doksum,
1977), we have that

√
n

[
F2n2(T 2

(n2))

Hn(Dn)

∫ T 1
(n1)

0

{1− F1n1
(t)} dt−

∫ ∞
0

{1− F1(t)} dt

]
converge in distribution to a normal random variable Z1 with 0 mean and variance σ2

1 ,

σ2
1 = (1 + λ−1)

∫ τ1

0

[∫ ∞
t

{1− F1(s)} ds
]2 dF1(t)

{1− F1(t)}2 {1−G1(t−)}
.

With the same arguments and assumptions, we see that

√
n

[
F1n1

(T 1
(n1))

Hn(Dn)

∫ T 2
(n2)

0

{1− F2n2
(t)} dt−

∫ ∞
0

{1− F2(t)} dt

]
converge in distribution to the normal random variable Z2, which are independent of Z1

with 0 mean and variance σ2
2 ,

σ2
2 = (1 + λ)

∫ ∞
0

[∫ τ2

t

{1− F2(s)} ds
]2 dF2(t)

{1− F2(t)}2 {1−G2(t−)}
,

which completes the proof of Theorem with the fact that Z1 and Z2 are independent.
Then in order to apply the result of Theorem 3.1 for the inference for β1, we need a con-

sistent estimate of σ2. For this, let T 1
(i) be the i th largest observation among T1, · · · , Tn1

and δ1
(i), its concomitant variable. Also let T 2

(j) be the j th largest observation among

Tn1+1, · · · , Tn and δ2
(j), its concomitant variable. Then an estimate σ̂2

n of σ2 can be ob-

tained as follows (Gill, 1983):

σ̂2
n = n

F 2
2n2

(T 2
(n2))

H2
n(Dn)

n1∑
i=1

[∫ T 1
(n1)

T 1
(i)

{1− F1n1(s)} ds

]2
δ1
(i)

(n1 − i)(n1 − i+ 1)

+n
F 2

1n1
(T 1

(n1))

H2
n(Dn)

n2∑
j=1

[∫ T 2
(n2)

T 2
(j)

{1− F2n2
(s)} ds

]2
δ2
(j)

(n2 − j)(n2 − j + 1)
.

We note that we cannot say that σ̂2
n is a consistent estimate of σ2 if the conditions (3.1)-(3.5)

are not satisfied.
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4. A numerical example and some concluding remarks

In order to illustrate our procedure, we use the following data in Table 4.1 from Pike
(1966), which gave the times from insult with carcinogen DMBA to mortality from vaginal
cancer in rats. According to a pre-treatment regime, 40 rats were divided into two groups
as Group 1 and 2 with sample sizes 19 and 21, respectively. In Table 4.1, + implies censored
observation. Then under the location translation model, in order to estimate the treatment
effect, β1, for the pre-treatment regimens, we obtained the following relevant quantities.

F1,19(304) = 1, F2,21(344) = 0.95, H40(201) = 0.95,

∫ 304

0

{1− F1n1(t)} dt = 218.76 and

∫ 344

0

{1− F2n2(t)} dt = 241.85.

Thus we have that

β̂1 =
241.85− 0.95× 218.76

0.95
= 35.82.

Table 4.1 Days to vaginal cancer mortality in rats

Group Survival times
1 143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 216+, 220,

227, 230, 234, 244+, 246, 265, 304
2 142, 156, 163, 198, 204+, 205, 232, 232, 233, 233, 233, 233,

239, 240, 261, 280, 280, 296, 296, 323, 344+

Also we obtained

19∑
i=1

[∫ T 1
(19)

T 1
(i)

{1− F1,19(s)} ds

]2
δ1
(i)

(19− i)(19− i+ 1)
= 82.61

and

21∑
j=1

[∫ T 2
(21)

T 2
(j)

{1− F2,21(s)} ds

]2
δ2
(j)

(21− j)(21− j + 1)
= 121.62.

Thus we have that

σ̂2
40 = 8694.76.

Then for testing H0 : β1 = 0, since

√
40β̂1/

√
σ̂2

40 = 2.430,

we may see that the asymptotic p -value is 0.0075 from the standard normal distribution
for the one-sided alternative H1 : β1 > 0. In passing, we note that Kalbfleisch and Prentice
(1980) obtained the 2.75 and 2.72 as the values of the approximate chi-square statistics
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for the linear rank and log-rank statistics, respectively. Therefore the test based on our
proposed estimate suggest stronger evidence for a difference between the two populations.

That either condition in (3.1) is violated or omitted would not guarantee the unbiasedness

for the estimate β̂1. Therefore our estimation procedure can not completely prevent the
bias from the censoring mechanism but provide a tool with easy application to obtain the
treatment effect. Also the explicit form for the estimate may be another advantage of our
method.

As a by-product of our procedure, we may obtain a simple estimate of the mean-life for the
censored data using the same arguments. For this suppose that we have a sample (Ti, δi),
i = 1, · · · , n from a population having the unknown distribution function F with mean µ,
where Ti and δi are defined as (2.2) under the iid setting. Let Fn be the corresponding
Kaplan-Meier estimate of F . Then the least square estimate µ̂ can be obtained with the
same modification in (2.10) as

µ̂ =
1

Fn(T(n))

∫ T(n)

0

{1− Fn(t)} dt,

where T(n) is the largest observation from T1, · · · , Tn. Thus we note that µ̂ becomes the
usual sample mean-life when the largest observation is not censored. For the fixed censoring
case, especially the type I censoring, the least square estimate µ̂ can be useful since the
censoring time T is pre-assigned. Then in this case, µ̂ can be considered an estimate of the
mean for the truncated distribution at T .

One may try to apply the least square method to the models which may include some
covariate or covariates. Then it would be inevitable to use the iterative procedure for the
calculation to obtain the estimate since (2.3) is one of such models.

Finally we note that the two expressions for β̂1 in (2.8) and (2.10) coincide if the largest
observation from each sample is not censored. Since the jump size for the Kaplan-Meier
estimate is 0 for the censored observation, if the largest observation is censored then the
contribution of the largest observation can be included for (2.10) but not for (2.8), which may
incur some serious underestimation of for each component. This is why we have proposed
(2.10) instead of (2.8).
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