DOI QR코드

DOI QR Code

Detection of CTX-M and TEM type extended-spectrum β-lactamases in Escherichia coli isolated from livestocks in Korea

국내 가축 유래 대장균에서 CTX-M 및 TEM형 extended-spectrum β-lactamases의 검출

  • Cho, Jae-Keun (Metropolitan Health & Enviornmental Research Institute) ;
  • Sung, Myung-Suk (Gyeongbuk Veterinary Service Laboratory) ;
  • Kim, Jin-Hyun (College of Veterinary Medicine, Kyungpook National University) ;
  • Kim, Ki-Seuk (College of Veterinary Medicine, Kyungpook National University)
  • 조재근 (대구광역시 보건환경연구원) ;
  • 성명숙 (경상북도 가축위생시험소) ;
  • 김진현 (경북대학교 수의과대학) ;
  • 김기석 (경북대학교 수의과대학)
  • Received : 2011.02.25
  • Accepted : 2011.03.24
  • Published : 2011.03.30

Abstract

This study was conducted to investigate the prevalence and genotypes of extended-spectrum ${\beta}$-lactamase (ESBL) in 377 Escherichia coli isolated from healthy and sick animals. Two isolates (0.5%), each of which were isolated from diseased swine and chicken, respectively, were confirmed as ESBL producing isolates by double disk synergy test, and showed a multidrug resistant phenotype. Minimum inhibitory concentration of cefotaxime for the two ESBL producing isolates were 3~4 times higher than those of ceftazidime, respectively. By PCR and sequencing, one isolate from swine have both $bla_{CTX-15}$ and $bla_{TEM-1}$, and one isolate from chicken have $bla_{CTX-15}$ and $bla_{TEM-116}$. Also, these genes were transferred to E. coli J53 by conjugation. These two isolates showed unrelated pulsed-field gel electrophoresis. To our knowledge, this is the first time that $bla_{TEM-116}$ gene was identified in E. coli isolated from animals in Korea. These results suggest more prudent use of third- generation cephalosporins, and surveillance and monitoring for ESBL producing E. coli in both animals and their environments should be necessary.

Keywords

References

  1. Vance HN. 1967. A survey of the alimentary tract of cattle for Clostridium perfringens. Can J Comp Med Vet Sci 31(10): 260-264.
  2. 정병렬, 신동호, 변재원, 김하영, 하현수, 임숙경. 2010. 국내 동물 유래 extended-spectrum $\beta$-lactamase 생성균주의 유전자형 및 분포율. 한국수의공중보건학회지 34(2): 103-108.
  3. Ambler RP, Coulson AF, Frere JM, Ghuysen JM, Joris B, Forsman M, Levesque RC, Tiraby G, Waley SG. 1991. A standard numbering scheme for the class A beta- lactamases. Biochem J 276(pt1): 269-270. https://doi.org/10.1042/bj2760269
  4. Bauernfeind A, Grimm H, Schweighart S. 1990. A new plasmidic cefotaximase in a clinical isolate of Escherichia coli. Infection 18(5): 294-298. https://doi.org/10.1007/BF01647010
  5. Bonnet R. 2004. Growing group of extended-spectrum $\beta$-lactamases: The CTX-M- enzymes. Antimicrob Agents Chemother 48(1): 1-14. https://doi.org/10.1128/AAC.48.1.1-14.2004
  6. Bradford PA. 2001. Extended-spectrum $\beta$-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14(4): 933-951. https://doi.org/10.1128/CMR.14.4.933-951.2001
  7. Bradley DE, Taylor DE, Cohen DR. 1980. Specification of surface mating systems among conjugative drug resistance plasmids in Escherichia coli K-12. J Bacteriol 143(3): 1466-1470.
  8. Brinas L, Zarazaga M, Saenz Y, Ruiz-Larrea F, Torres C. 2002. $\beta$-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob Agents Chemother 46(10): 3156-3163. https://doi.org/10.1128/AAC.46.10.3156-3163.2002
  9. Brinas L, Moreno MA, Teshager T, Saenz Y, Porrero MC, Dominguez L, Torres C. 2005. Monitoring and characterization of extended-spectrum beta-lactamases in Escherichia coli strains from healthy and sick animals in Spain in 2003. Antimicrob Agents Chemother 49(3): 1262-1264.
  10. Bush K, Jacoby GA, Medeiros AA. 1995. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39(6): 1211-1233. https://doi.org/10.1128/AAC.39.6.1211
  11. Carattoli A, Lovari S, Franco A, Cordaro G, Di Matteo P, Battisti A. 2005. Extended-spectrum beta-lactamases in Escherichia coli isolated from dogs and cats in Rome, Italy, from 2001 to 2003. Antimicrob Agents Chemother 49(2): 833-835. https://doi.org/10.1128/AAC.49.2.833-835.2005
  12. CDC, Pulsenet. 2004. Standardized laboratory protocol for molecular subtyping of Escherchia coli O157:H7, non- typhoidal Salmonella serotypes, and Shigella sonnei by PFGE. http://www.cdc.gov/pulsenet/protocols/ecoli_salmonella_ shigella_protocols.pdf.
  13. Jacoby GA, Medeiros AA. 1991. More extended-spectrum beta- lactamases. Antimicrob Agents Chemother 35(9): 1697-1704. https://doi.org/10.1128/AAC.35.9.1697
  14. Jarlier V, Nicolas MH, Fournier G, Philippon A. 1988. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 10(4): 867-878. https://doi.org/10.1093/clinids/10.4.867
  15. Jeong SH, Bae IK, Lee JH, Sohn SG, Kang GH, Jeon GJ, Kim YH, Jeong BC, Lee SH. 2004. Molecular character ization of extended-spectrum beta-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J Clin Microbiol 42(7): 2902-2906. https://doi.org/10.1128/JCM.42.7.2902-2906.2004
  16. Kim J, Kwon Y, Pai H, Kim JW, Cho DT. 1998. Survey of Klebsiella pneumoniae strains producing extended- spectrum beta-lactamases: prevalence of SHV-12 and SHV-2a in Korea. J Clin Microbiol 36(5): 1446-1449.
  17. Kim J, Lim YM, Jeong YS, Seol SY. 2005a. Occurrence of CTX-M-3, CTX-M-15, CTX-M-14, and CTX-M-9 extended- spectrum $\beta$-lactamases in Enterobacteriae clinical isolates in Korea. Antimicrob Agents Chemother 49(4): 1572-1575. https://doi.org/10.1128/AAC.49.4.1572-1575.2005
  18. Kim J, Lim YM, Rheem I, Lee Y, Lee JC, Seol SY, Lee YC, Cho DT. 2005b. CTX-M and SHV-12 $\beta$-lactamases are the most common extended-spectrum enzymes in clinical isolates of Escherichia coli and Klebsiella pnemoniae collected from 3 university hospitals within Korea. FEMS Microbiol Let 245(1): 93-98. https://doi.org/10.1016/j.femsle.2005.02.029
  19. Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. 1983. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 11(6): 315-317. https://doi.org/10.1007/BF01641355
  20. Lim SK, Lee HS, Nam HM, Jung SC, Bae YC. 2009. CTXM- type beta-lactamase in Escherichia coli isolated from sick animals in Korea. Microb Drug Resist 15(2): 139-142. https://doi.org/10.1089/mdr.2009.0901
  21. Livermore DM. 1995. $\beta$-lactamases in laboratory and clinical resistance. Clin. Microbiol Rev 8(4): 557-584.
  22. Meunier D, Jouy E, Lazizzera C, Kobisch M, Madec JY. 2006. CTX-M-1 and CTX-M-15-type beta-lactamases in clinical Escherichia coli isolates recovered from food-producing animals in France. Int J Antimicrob Agents 28(5): 402-407. https://doi.org/10.1016/j.ijantimicag.2006.08.016
  23. Monstein HJ, Ostholm-Balkhed A, Nilsson MV, Nilsson M, Dornbusch K, Nilsson LE. 2007. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS 115(2): 1400-1408. https://doi.org/10.1111/j.1600-0463.2007.00722.x
  24. National Committee for Clinical Laboratory Standards. 2003a. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically ; Approved standard-sixth edition. NCCLS document M7-A. National Committee for Clinical Laboratory Standards, Villanova, Pa.
  25. National Committee for Clinical Laboratory Standards. 2003b. Performance standards for antimicrobial disk susceptibility test, 8th infomational supplement: approved standard M2-A8. NCCLS, Wayne, Pa, USA.
  26. Oliver A, Perez-Vázquez M, Martinez-Ferrer M, Baquero F, De Rafael L, Cantón R. 1999. Ampicillin-sulbactam and amoxicillin-clavulanate susceptibility testing of Escherichia coli isolates with different beta-lactam resistance phenotypes. Antimicrob Agents Chemother 43(4): 862- 867.
  27. Pai H, Choi EH, Lee HJ, Hong JY, Jacoby GA. 2001. Identification of CTX-M-14 extended-spectrum beta-lactamase in clinical isolates of Shigella sonnei, Escherichia coli, and Klebsiella pneumoniae in Korea. J Clin Microbiol 39(10): 3747-3749. https://doi.org/10.1128/JCM.39.10.3747-3749.2001
  28. Pai H, Lyu S, Lee JH, Kim J, Kwon Y, Kim JW, Choe KW. 1999. Survey of extended-spectrum $\beta$-lactamase in clinical isolates of Escherichia coli and Klebsiella pneumoniae : prevalence of TEM-52 in Korea. J Clin Microbiol 37(6): 1758-1763.
  29. Park NY, NA SH, Cho HS. 2007. Detection of beta-lactam antibiotic resistant genes in Escherichia coli from porcine fecal samples using DNA chip. Kor J Vet Serv 30(4) : 505-510.
  30. Paterson DL, Bonomo RA. 2005. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18(4): 657-686. https://doi.org/10.1128/CMR.18.4.657-686.2005
  31. Poirel L, Gniadkowski M, Nordmann P. 2002. Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum beta- lactamase CTX-M-15 and of its structurally related beta-lactamase CTX-M-3. J Antimicrob Chemother 50(6): 1031-1034. https://doi.org/10.1093/jac/dkf240
  32. Tzouvelekis LS, Tzelepi E, Tassios PT, Legakis NJ. 2000. CTX-M-type beta-lactamases: an emerging group of extended- spectrum enzymes. Int J Antimicrob Agents 14(2): 137-142. https://doi.org/10.1016/S0924-8579(99)00165-X

Cited by

  1. Prevalence of antimicrobial resistance and integrons in extended-spectrum β-lactamases producing Escherichia coli isolated from Nakdong and Gumho river vol.37, pp.1, 2014, https://doi.org/10.7853/kjvs.2014.37.1.19
  2. Characterization of cefotaxime-resistant Escherichia coli isolated from wastewater treatment plant in Daegu vol.37, pp.4, 2014, https://doi.org/10.7853/kjvs.2014.37.4.225
  3. Monitoring for cephalosporins residues in raw meat in Seoul vol.38, pp.4, 2015, https://doi.org/10.7853/kjvs.2015.38.4.259