DOI QR코드

DOI QR Code

A Study on the Properties of AlN Films Deposited with Nitrogen Ion Beam Assisted RF Magnetron Sputtering

질소이온 빔 보조 마그네트론 스퍼터로 증착 된 AlN 박막의 물성연구

  • Heo, Sung-Bo (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Hak-Min (School of Materials Science and Engineering, University of Ulsan) ;
  • Jeong, Chul-Woo (School of Materials Science and Engineering, University of Ulsan) ;
  • Choi, Dae-Han (Innovation Planning Team, Shinki Intermobile Co.) ;
  • Lee, Byung-Hoon (Innovation Planning Team, Shinki Intermobile Co.) ;
  • Kim, Min-Gyu (Innovation Planning Team, Shinki Intermobile Co.) ;
  • You, Yong-Zoo (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Daeil (School of Materials Science and Engineering, University of Ulsan)
  • 허성보 (울산대학교 첨단소재공학부) ;
  • 이학민 (울산대학교 첨단소재공학부) ;
  • 정철우 (울산대학교 첨단소재공학부) ;
  • 최대한 ((주) 신기인터모빌 혁신기획팀) ;
  • 이병훈 ((주) 신기인터모빌 혁신기획팀) ;
  • 김민규 ((주) 신기인터모빌 혁신기획팀) ;
  • 유용주 (울산대학교 첨단소재공학부) ;
  • 김대일 (울산대학교 첨단소재공학부)
  • Received : 2010.12.28
  • Accepted : 2011.01.10
  • Published : 2011.03.30

Abstract

Aluminum nitride (AlN) thin films were prepared by using nitrogen ion beam assisted reactive radio frequency (RF) magnetron sputtering on the glass substrates without intentional substrate heating. After deposition, the effect of nitrogen ion beam energy on the structural and optical properties of AlN films were investigated by x-ray diffraction (XRD), atomic force microscope (AFM) and UV-Vis. spectrophotometer, respectively. AlN films deposited with $N^+$ ion irradiation at 100 eV show the higher (002) peak intensity in XRD pattern than other films. It means that $N^+$ ion energy of 100 eV is the favorable condition for low temperature crystallization. AFM images also show that surface average roughness is increased from 1.5 to 9.6 nm with $N^+$ ion energy in this study. In an optical observation, AlN films which deposited by $N^+$ ion beam energy of 100 eV show the higher transmittance than that of the films prepared with the other $N^+$ ion beam conditions.

Keywords

References

  1. J. P. Kar, G. Bose, S. Tuli, A. Dangwal and S. Mukherjee, J. Mater. Eng. Perform., 18(8) (2009) 1046. https://doi.org/10.1007/s11665-008-9350-1
  2. M. B. Assouar, O. Elmazria, L. Le Brizoual and P. Alnot, Diamond Rel. Mater., 11(3) (2002) 413. https://doi.org/10.1016/S0925-9635(01)00708-7
  3. T. Kitahara, N. Ichikawa and Y. Nomoto, Vacuum, 82(1) (2007) 109. https://doi.org/10.1016/j.vacuum.2006.12.006
  4. J. Zhang and I. W. Boyd, App. Surf. Sci., 154-155(1) (2000) 17. https://doi.org/10.1016/S0169-4332(99)00406-7
  5. Z. Pajkic and M. W. Porad, Sur. Coat. Technol., 203 (20-21) (2009) 3168. https://doi.org/10.1016/j.surfcoat.2009.03.047
  6. L. Vergara, J. Olivares, E. Iborra, M. Clement, A. S. Hervas and J. Sangrador, Thin Solid Films, 515(4) (2006) 1814. https://doi.org/10.1016/j.tsf.2006.07.002
  7. G. Gordillo, J. M. Florez and L. C. Hernandez, Sol. Energy Mater. Sol. Cells, 37(3-4) (1995) 273. https://doi.org/10.1016/0927-0248(95)00020-8
  8. D. Kim, J. Alloy. Comp., 493(1-2) (2010) 208. https://doi.org/10.1016/j.jallcom.2009.12.056