DOI QR코드

DOI QR Code

Analysis of Hydrodynamic Similarity in Three-Phase Fluidized Bed Processes

삼상유동층 공정에서 수력학적 Similarity 해석

  • Lim, Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Lim, Hyun-Oh (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Jin, Hae-Ryoung (Department of Chemical Engineering, Chungnam National University) ;
  • Lim, Dae-Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Kang, Yong (Department of Chemical Engineering, Chungnam National University)
  • 임호 (충남대학교 화학공학과) ;
  • 임현오 (충남대학교 녹색에너지 전문대학원) ;
  • 진해룡 (충남대학교 화학공학과) ;
  • 임대호 (충남대학교 화학공학과) ;
  • 강용 (충남대학교 화학공학과)
  • Published : 2011.12.01

Abstract

Hydrodynamic similarity was analyzed by employing scaling factor in three phase fluidized beds. The scaling factor was defined based on the holdups of gas, liquid and solid particles and effectivity volumetric flux of fluids between the two kinds of fluidized beds with different column diameter. The column diameter of one was 0.102 m and that of the other was 0.152 m. Filtered compressed air, tap water and glass bead of which density was 2,500 kg/$m^3$ were used as gas, liquid and solid phases, respectively. The individual phase holdups in three phase fluidized beds were determined by means of static pressure drop method. Effects of gas and liquid velocities and particle size on the scaling factors based on the holdups of each phase and effective volumetric flux of fluids were examined. The deviation of gas holdup between the two kinds of three phase fluidized beds decreased with increasing gas or liquid velocity but increased with increasing fluidized particle size. The deviation of liquid holdup between the two fluidized beds decreased with increasing gas or liquid velocity or size of fluidized solid particles. The deviation of solid holdup between the two fluidized beds increased with increasing gas velocity or particle size, however, decreased with increasing liquid velocity. The deviation of effective volumetric flux of fluids between the two fluidized beds decreased with increasing gas velocity or particle size, but increased with increasing liquid velocity. The scaling factor, which was defined in this study, could be effectively used to analyze the hydrodynamic similarity in three phase fluidized processes.

삼상유동층에서 수력학적 유사성을 규모인자(scaling factor)를 이용하여 해석하였다. 규모인자는 직경이 다른 두 종류의 삼상유동층간의 기체, 액체, 그리고 고체입자의 체류량과 단위면적당 유효부피흐름속도를 기준으로 정의하였다. 두 종류 삼상유동층의 직경은 각각 0.102 m와 0.152 m이었다. 여과된 압축공기, 물 그리고 밀도가 2,500 kg/$m^3$인 유리구슬을 각각 기체, 액체 그리고 유동고체입자로 사용하였다. 각 삼상유동층에서 각 상들의 체류량은 정압강하법에의해 결정하였다. 기체 및 액체의 유속 그리고 고체유동입자의 크기가 각 상들을 기준으로한 규모인자와 유효부피흐름속도를 기준으로한 규모인자에 미치는 영향을 검토하였다. 직경이 다른 두 삼상유동층에서 기체 체류량의 편차는 기체와 액체의 유속이 증가함에 따라 감소하였으나 유동입자의 크기가 증가함에 따라 증가하였다. 직경이 다른 두 종류 삼상유동층에서 액체 체류량 편차는 기체와 액체 그리고 고체유동입자의 크기가 증가함에 따라 감소하였다. 두 종류 삼상유동층에서 고체입자 체류량 편차는 기체유속과 유동입자의 크기가 증가함에 따라 증가하였으나 액체의 유속이 증가함에 따라 감소하였다. 직경이 다른 두 종류 삼상유동층에서 유효부피흐름속도를 매개로 한 규모인자는 기체유속과 유동입자의 크기가 증가함에 따라 감소하였으나 액체의 유속이 증가함에 따라 증가하였다. 본 연구에서 정의된 규모인자는 삼상유동층 공정의 수력학적 유사성을 해석하는데 효과적으로 사용될 수 있었다.

Keywords

References

  1. Fan, L. S., Gas-Liquid-Solid Fluidization Engineering, Butterworths, Stonehair, Ma.(1989).
  2. Kim, S. D. and Kang, Y., "Heat and Mass Transfer in Threephase Fluidized Beds; An Overview," Chem. Eng. Sci., 52(21-22), 3639-3660(1997). https://doi.org/10.1016/S0009-2509(97)00269-8
  3. Kim, S. D. and Kang, Y., "Hydrodynamic, Heat and Mass Transfer in Inverse and Circulating Three-phase Fluidized-bed Reactors for Waste Water Treatment," Studies In Surface Science And Catalyst, 159, 103-108(2006). https://doi.org/10.1016/S0167-2991(06)81545-4
  4. Kang, Y., Lee, K. I., Shin, I. S., Son, S. M., Kim, S. D. and Jung, H., "Characteristics of Hydrodynamics, Heat and Mass Transfer In Three-phase Inverse Fluidized Beds," Korea Chem. Eng. Res. (HWAHHAK KONGHAK), 45, 451(2008).
  5. Kim, S. D. and Kang, Y., "Dispersion Phase Characteristics in t Hree-phase Fluidized Beds,"Mixed Flow Hydridynamics, Advanced Eng. Fluid Meckanics Series, Gulf Pub. Co. New York(1996).
  6. Wild, G., Saberian, M., Schwarty, J. and Charpentier, J. E., "Gasliquid- solid Fluidized-bed Reactors : State of Art and Industrial Possibilities," Int'l Chem. Eng., 24, 639(1984).
  7. Lefebvre, S., Guy, C. and Chaouki, J., "Solid Phase Hydrodynamics of Three-phase Fluidized Beds-a Convective/dispersive Mixing Model," Chem. Eng. J. 133(1-3), 85-95(2007). https://doi.org/10.1016/j.cej.2007.02.004
  8. Kang, Y., Ko, M. H., Woo, K. J., Kim, S. D., Park, S. G., Yashima, M. and Fan, L. T., "Mixing of Particles in Gas-liquid-solid Fluidized Beds Containing a Binary Mixture of Particles," I&EC Res., 37, 4167(1998).
  9. Cho, Y. J., Song, P. S., Kim, S. H., Kang, Y. and Kim, S. D., "Stochastic Analysis of Gas-liquid-solid Flow in Three-phase Circulating Fluidized Beds," J. Chem. Eng. Japan., 34(2), 254- 261(2001). https://doi.org/10.1252/jcej.34.254
  10. Son, S. M., Shin, H. J., Kang, S. H., Kang, Y. and Kim, S. D., "Characteristic of Phase Holdups and Pressure Fluctuations in a Three-phase Swirling Fluidized Bed," J. Korean Ind. Eng. Chem. 15(6), 652-658(2004).
  11. Kang, Y. and Kim, S. D., "Stochastic Analysis and Modeling of Three-phase Fluidized Beds," Chem. Ind. Technol., 13, 27(1995).
  12. Lee, K. I., Son, S. M., Kim, U. Y., Kang, S. H., Kang, Y. and Kim, S. D., "Particle Dispersion in Viscous Three-phase Inverse Fluidized Beds," Chem. Eng. Sci., 62, 7060(2007). https://doi.org/10.1016/j.ces.2007.08.024
  13. Son, S. M., Kang, S. H., Kang, Y. and Kim, S. D., "Characteristics of Particle Flow and Heat Transfer in Liquid-particle Swirling Fluidized Beds," Korean Chem. Eng. Res.(HWAHHAK KONGHAK), 44(5), 505-512(2006).
  14. Kang, Y. and Kim, S. D., "Solid Flow Transition in Liquid and Three-phase Fluidized Beds," Particulate Sci. Technol., 6, 133(1988). https://doi.org/10.1080/02726358808906492
  15. Shin, K. S., Song, P. S., Lee, C. G. Kang, S. H., Kang, Y., Kim, S. D. and Kim, S. J., "Heat Transfer Coefficient in Viscous Liquid-solid Circulation Fluidized Beds," AIChE J., 51(2), 671-677 (2005). https://doi.org/10.1002/aic.10291
  16. Lin, T. J. and Chiu, H. T., "Effects of Macroscopic Hydrodynamics on Heat Transfer in a Three-phase Fluidized Bed," Catalysis Today, 79-80, 159-167(2003). https://doi.org/10.1016/S0920-5861(03)00021-X
  17. Wan, L., Alvareg-cuenca, M., Upreti, S. R. and Lohi, A., "Development of a Three-phase Fluidized Bed Reactor with Enhanced Oxygen Transfer," Chem. Eng. Processing : Process Intensification, Doi:10.1016/J.Cep. 2009. 10. 012(2009).
  18. Ramesh, K. V., Raju, G. M. J., Sarma, G. V. S. and Sarma C. B., "Effect of Internal on Phase Holdups of a Three-phase Fluidized Bed," Chem. Eng. J. 145, 393(2009). https://doi.org/10.1016/j.cej.2008.08.023
  19. Jena, H. M., Roy, G. K. and Meikap, B. C., "Prediction of Gas Holdup in a Three-phase Fluidized Bed from Bed Pressure Drop Measurement," Chem. Eng. Res. Des., 86, 1301(2008). https://doi.org/10.1016/j.cherd.2008.05.007