DOI QR코드

DOI QR Code

$CO_2$ Capture Process using Aqueous Monoethanolamine (MEA): Reduction of Solvent Regeneration Energy by Flue gas Splitting

모노에탄올아민(MEA)을 이용한 이산화탄소 포집공정: 배가스 분할 유입을 통한 흡수제 재생 에너지 절감 연구

  • Jung, Jaeheum (School of Chemical & Biological Engineering, Seoul National University) ;
  • Lim, Youngsub (School of Chemical & Biological Engineering, Seoul National University) ;
  • Jeong, Yeong Su (School of Chemical & Biological Engineering, Seoul National University) ;
  • Lee, Ung (School of Chemical & Biological Engineering, Seoul National University) ;
  • Yang, Seeyub (School of Chemical & Biological Engineering, Seoul National University) ;
  • Han, Chonghun (School of Chemical & Biological Engineering, Seoul National University)
  • 정재흠 (서울대학교 화학생물공학부) ;
  • 임영섭 (서울대학교 화학생물공학부) ;
  • 정영수 (서울대학교 화학생물공학부) ;
  • 이웅 (서울대학교 화학생물공학부) ;
  • 양시엽 (서울대학교 화학생물공학부) ;
  • 한종훈 (서울대학교 화학생물공학부)
  • Published : 2011.12.01

Abstract

The process of $CO_2$ capture using aqueous Monoethanolamine(MEA) has been considered as one of the leading technologies for intermediate-term strategy to reduce the $CO_2$ emission. This MEA process, however, consumes relatively a large amount of energy in the stripper for absorbent regeneration. For this reason, various process alternatives are recently established to reduce the regeneration energy. This paper suggests a flue gas split configuration as one of MEA process alternatives and then simulates this process using commercial simulator. This flue gas splitting has an effect on reducing the temperature of the lower section of absorber as well as decreasing the absorbent flow rate. Compared to the base model, this optimized flue gas split process provides 6.4% reduction of solvent flow rate and 5.8% reduction of absorbent regeneration energy.

모노에탄올아민(MEA)으로 대표되는 습식 아민을 이용한 이산화탄소 포집 공정은 기술적 신뢰도가 높아 초기 CCS(Carbon Capture & Storage) 시장을 주도할 것으로 전망된다. 다만 흡수제 재생에 에너지 소비가 많은 점이 단점으로 지적 받고 있어 흡수제 재생 에너지 절감을 위한 다양한 공정 개선안이 연구되고 있다. 본 논문에서는 MEA 공정에서 흡수탑으로 유입되는 배가스를 분할 유입하는 공정 개선안을 제안 하고 시뮬레이터를 이용한 공정모사를 통하여 그 효과를 보였다. 배가스를 분할 유입한 결과 흡수탑 하단부에서 냉각효과가 있었고 이로 인해 흡수제 유량이 감소하였다. 배가스 분할 비와 분할 유입 단 높이를 변경하며 최적 분할 조건을 찾았으며 이때 흡수제 유량은 6.4%, 재생 에너지는 5.8% 감소하였다.

Keywords

References

  1. IEA, "Energy Technology Perspectives," (2010).
  2. Min, B.-M., "Status of $CO_{2}$ Capturing Technologies in Post Combustion," KIC News, 12(1) (2009).
  3. Mikael, H., "Carbon Capture and Storage," Department of Nuclear and Particle physics, UPPSALA University. http://www.tsl.uu.se/uhdsg/Popular/CCS.pdf.(2007).
  4. Plaza, J. M., Chen, E. and Rochelle, G. T., "Absorber Intercooling in $CO_{2}$ Absorption by Piperazine-promoted Potassium Carbonate," AIChE Journal, 56(4), 905-914(2010).
  5. Reddy, S., Johnson, D., and Gilmartin, J., "Fluor's Econamine FG PlusSM Technology For $CO_{2}$ Capture at Coal-fired Power Plants," FLUOR(2008).
  6. Schacha, M. O., Schneiderb, R., Schrammb, H. and Repke, J. U., "Exergoeconomic Analysis of Post-Combustion $CO_{2}$ Capture Processes," Computer Aided Chemical Engineering, 28, 997-1002 (2010). https://doi.org/10.1016/S1570-7946(10)28167-1
  7. Chang, H. and Shih, C. M., "Simulation and Optimization for Power Plant Flue Gas $CO_{2}$ Absorption-Stripping Systems," Separation Science and Technology, 40(4), 877-909(2005). https://doi.org/10.1081/SS-200048014
  8. Veawab, A. and Aroonwilas, A., "Energy Requirement for Solvent Regenertion in $CO_{2}$ Capture Plants," 9th International Network for $CO_{2}$ capture(2006).
  9. Won, R., Condorelli, P., Scherffius, J. and Mariz, C., "Split Flow Process and Apparatus," EP Patent 1,152,815(2009).
  10. Reddy, S., Scherffius, J., Gilmartin, J. and Freguia, S., "Split Flow Process and Apparatus," US Patent US20060032377 A1 (2006).
  11. Plaza, J. M., Wagener, D. V. and Rochelle, G. T., "Modeling $CO_{2}$ Capture with Aqueous Monoethanolamine," Energy Procedia, 1(1), 1171-1178(2009). https://doi.org/10.1016/j.egypro.2009.01.154
  12. Alie, C. F., "$CO_{2}$ Capture with MEA: Integrating the Absorption Process and Steam Cycle of an Existing Coal-fired Power Plant," University of Waterloo, Canada(2004).
  13. Alie, C., Douglas, P. and Croiset, E., "Simulation and Optimization of a Coal-fired Power Plant with Integrated $CO_{2}$ Capture Using MEA Scrubbing," GHGT-8 Conference(2006).
  14. Romeo, L. M., Bolea, I. and Escosa, J. M., "Integration of Power Plant and Amine Scrubbing to Reduce $CO_{2}$ Capture Costs," Applied Thermal Engineering, 28(8-9), 1039-1046(2008). https://doi.org/10.1016/j.applthermaleng.2007.06.036
  15. Dugas, R. E., "Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine," MSE Thesis, University of Texas at Austin(2006).
  16. Kim, J.-C., Kim, J.-M., Park, J.-W., Wang, S. K., Lee, K. Y., Lee, Y. M., Lee, C.-H., Chung, S. H. and Hong, W. H., "Carbon Dioxide Capture and Storage," Cheong Moon Gak(2008).
  17. Fashami, S. Z., Edgar, D. T. F. and Rochelle, D. G. T., "Modeling and Optimization of $CO_{2}$ Removal in Power Plants," TWMCC Conference(2007).
  18. Abu-Zahra, M. R. M., Schneiders, L. H. J., Niederer, J. P. M., Feron, P. H. M. and Versteeg, G. F., "$CO_{2}$ Capture from Power Plants: Part I. A Parametric Study of the Technical Performance Based on Monoethanolamine," Int. J. Greenhouse Gas Control., 1(1), 37-46(2007). https://doi.org/10.1016/S1750-5836(06)00007-7
  19. "Rate-Based Model of the $CO_{2}$ Capture Process by MEA using Aspen Plus," Aspentech.

Cited by

  1. Pinch based approach to estimate CO2 capture and storage retrofit and compensatory renewable power for South Korean electricity sector vol.29, pp.9, 2012, https://doi.org/10.1007/s11814-011-0302-3
  2. Nonlinear Modeling and Application of PI Control on Pre-cooling Session of a Carbon Dioxide Storage Tank at Normal Temperature and Pressure vol.52, pp.5, 2014, https://doi.org/10.9713/kcer.2014.52.5.574
  3. Recovery Plants for Enhanced Oil Recovery Applications vol.53, pp.37, 2014, https://doi.org/10.1021/ie502110q
  4. 이산화탄소 포집 시스템 개념설계 개발을 위한 시스템 엔지니어링 기반 접근방법 vol.9, pp.2, 2011, https://doi.org/10.14248/jkosse.2013.9.2.023