References
- Ball, M. and Wietschel, M., "The Future of Hydrogen-opportunities and Challenges," Int. J. Hydrogen Energy, 34, 615-627 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.014
- Crabtree, R.(Ed.), Energy Production and Storage: Inorganic Chemical Strategies for a Warming World, Wiley, 3-20(2010).
- Melis, A., "Solar Energy Conversion Efficiencies in Photosynthesis: Minimizing the Chlorophyll Antennae to Maximize Efficiency," Plant Science, 177, 272-280(2009). https://doi.org/10.1016/j.plantsci.2009.06.005
- McConnell, I., Li, G. and Brudvig, G. W., "Energy Conversion in Natural and Artificial Photosynthesis," Chem. Biol., 17, 434-447 (2010). https://doi.org/10.1016/j.chembiol.2010.05.005
- Allakhverdiev, S. I., Thavasi, V., Kreslavski, V. D., Zharmukhamedov, S. K., Klimov, V. V., Ramakrishna, S., Los, D. A., Miruto, M., Nishihara, H. and Carpentier, R., "Photosynthetic Hydrogen Production," J. Photochem. Photobio. C: Photochemistry reviews, 11, 87-99(2010).
- Kim J., Hydrogen production technology trends, Korea Institute of Science and Technology Information(KISTI)(2004).
- A study on high production technologies and economical estimation of hydrogen fuel, KIER-991417, 12(1999).
- Kim, S. J., Biological hydrogen production technology-present condition and vision, Sungkyunkwan University(2005).
- Park, J. W., Kim, J. M. and Yih, W. H., "Current Status of pHotobiological Hydrogen Production Technology Using Unicellular Marine Cyanobacterial Strains," J. Kor. Soc. of Oceanopraphy, 14(1), 63-68(2009).
- Gim, B. J. and Kim, J. W., "Economic Evaluation of Domestic Photobiological Hydrogen Production," Transactions of the Korean Hydrogen and New Energy Society, 19(4), 322-330(2008).
- Lee, J., Yi, Y. and Uhm, S., "Understanding Underlying Process of Water Electrolysis," J. Korean Ind. Eng. Chem., 19(4), 357-365 (2008).
- Lee, H.-S., Vermaas, W. F. J. and Rittmann, B. E., "Biological Hydrogen Production: Prospectives and Challenges," Trends in Biotechnology, 28(5), 262-271(2010). https://doi.org/10.1016/j.tibtech.2010.01.007
- Tributsch, H., "Photovoltaic Hydrogen Generation," Int. J. Hydrogen Energy, 33, 5911-5930(2008). https://doi.org/10.1016/j.ijhydene.2008.08.017
- Palumbo, R., Lede, J., Boutin, O., Elorza Ricart, E., Steinfeld, A., Moller, S., Weidenkaff, A., Fletcher, E. A. and Bielicki, J., "The Production of Zn from ZnO in a High-temperature Solar Decomposition Quench Process-I. The Scientific Framework for the Process," J. Chem. Eng. Sci., 53(14), 2503-2517(1998). https://doi.org/10.1016/S0009-2509(98)00063-3
- Stenfield, A., "Solar Hydrogen Production Via a Two-step Watersplitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions," Int. J. Hydrogen Energy, 27(6), 611-619(2002). https://doi.org/10.1016/S0360-3199(01)00177-X
-
Kodama, T., Kondoh, Y., Yamamoto, R., Andou, H. and Sator, N., "Thermochemical Hydrogen Production by a Redox System of
$ZrO_{2}$ -supported Co(II)-ferrite," Solar Energy, 78, 623-631(2005). https://doi.org/10.1016/j.solener.2004.04.008 - Miller, J. E., Allendorf, R. B., Diver, L. R. Evans, Siegel, N. P. and Strecker, J. N., "Metal Oxide Composites and Structures for Ultra-high Temperature Solar Thermochemical Cycles," J. Mater. Sci., 43, 4714-4728(2008). https://doi.org/10.1007/s10853-007-2354-7
-
Kodama, T., Gokon, N. and Yamamoto, R., "Thermochemical Two-step Water Splitting by
$ZrO_{2}$ -supported$NixFe_{3-x}O_{4}$ for Solar Hydrogen Production," Solar Energy, 82, 73-79(2008). https://doi.org/10.1016/j.solener.2007.03.005 -
Kaneko, H., Kodama, T., Gokon, N., Tamaura, Y., Lovegrove, K. and Luzzi, A., "Decomposition of Zn-ferrite for
$O_{2}$ Generation by Concentrated Solar Radiation," Solar Energy, 76, 317-322(2004). https://doi.org/10.1016/j.solener.2003.08.034 - Gokon, N., Mizuno, T., Nakamuro, Y. and Kodama, T., "Iron-Containing Yttria-Stabilized Zirconia System For Two-Step Thermochemical Water Splitting," J. Solar Energy Eng., 130(1), 011018- 1-011018-6(2008).
- Miller, E. L., Rocheleau, R. E. and Deng, X. M., "Design Considerations for a Hybrid Amorphous Silicon/photoelectrochemical Multijunction Cell for Hydrogen Production," Int. J. Hydrogen Energy, 28, 615-623(2003). https://doi.org/10.1016/S0360-3199(02)00144-1
- Xu, L., Garland, R. and Elam, C., "Critical Research for Cost- Effective Photoelectrochemical Production of Hydrogen," FY 2006 Annual progress report, 149-153(2006).
- Light, S., "2006 Energy Technology Research Award Address: Photoelectrochemical Storage of Solar Energy," Electrochemical Society Transactions, 2(28), 1-14(2007).
- Graetzel, M. and Augustinki, J., "Tandem Cell for Water Cleavage by Visible Light," US 6,936,143 B1(2005).
Cited by
- Hydrogen Impurities Analysis From Proton Exchange Membrane Hydrogen Production vol.24, pp.4, 2013, https://doi.org/10.7316/KHNES.2013.24.4.288
- A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network vol.52, pp.6, 2014, https://doi.org/10.9713/kcer.2014.52.6.720
- Fabrication of Fe-Cr-Al Porous Metal with Sintering Temperature and Times vol.22, pp.2, 2015, https://doi.org/10.4150/KPMI.2015.22.2.100
- Synthesis and Characterization of Covalently Cross-Linked SPEEK/Cs-substituted MoSiA/Ceria Composite Membranes with MoSiA for Water Electrolysis vol.26, pp.6, 2015, https://doi.org/10.7316/KHNES.2015.26.6.524
- Scenario-based Design and Life Cycle Cost Analysis of Energy Supply System for Transportation Sector vol.53, pp.2, 2015, https://doi.org/10.9713/kcer.2015.53.2.164
- co-catalyst effect on Photoelectrochemical Properties of GaN Photoelectrode vol.23, pp.4, 2016, https://doi.org/10.6117/kmeps.2016.23.4.113