DOI QR코드

DOI QR Code

Hydrogen Production Technology

수소생산기술현황

  • Joo, Oh-Shim (Clean Energy Research Center, Korea Institute of Science and Technology)
  • 주오심 (한국과학기술연구원 청정에너지센터)
  • Published : 2011.12.01

Abstract

Hydrogen is one of the few long-term sustainable clean energy carriers, emitting only water as by-products during its combustion or oxidation. The use of fossil fuels to produce hydrogen makes large amount of carbon dioxide (>7 kg $CO_{2}$/kg $H_{2}$) during the reforming processes. Hydrogen production can be environmentally benign only if the energy and the resource to make hydrogen is sustainable and renewable. Biomass is an attractive alternative to fossil fuels for carbon dioxide because of the hydrogen can be produced by conversion of the biomass and the carbon dioxide formed during hydrogen production is consumed by biomass generation process. Hydrogen production using solar energy also attracts great attention because of the potential to use abundance natural energy and water.

수소는 에너지를 방출하는 과정에서 부산물로 물만 배출하기 때문에 지속가능한 청정에너지원 중의 하나이다. 현재 세계적으로 사용되는 수소는 대부분 화석연료의 개질에 의해 생산되고 있으며 1kg 수소를 생산하는 과정에서 7kg 이상의 이산화탄소를 배출하고 있다. 수소를 생산하는 과정에서 투입되는 에너지와 자원이 지속가능하고 재생 가능해야 수소를 청정에너지원이라 할 수 있다. 바이오매스는 화석연료를 대체할 수 있는 에너지원중의 하나인데, 그 이유는 바이오매스로부터 수소를 생산할 수 있으며 수소생산과정에서 발생하는 이산화탄소는 바이오매스 생산과정에서 소비되기 때문에 이론적으로 이산화탄소를 발생시키지 않는 에너지원이다. 태양에너지와 물로부터 수소를 생산하는 기술은 지구상에 널려있는 자연에너지와 물을 사용하기 때문에 인류가 직면한 에너지와 환경문제를 해결하기 위한 가장 이상적인 기술 중의 하나이다.

Keywords

References

  1. Ball, M. and Wietschel, M., "The Future of Hydrogen-opportunities and Challenges," Int. J. Hydrogen Energy, 34, 615-627 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.014
  2. Crabtree, R.(Ed.), Energy Production and Storage: Inorganic Chemical Strategies for a Warming World, Wiley, 3-20(2010).
  3. Melis, A., "Solar Energy Conversion Efficiencies in Photosynthesis: Minimizing the Chlorophyll Antennae to Maximize Efficiency," Plant Science, 177, 272-280(2009). https://doi.org/10.1016/j.plantsci.2009.06.005
  4. McConnell, I., Li, G. and Brudvig, G. W., "Energy Conversion in Natural and Artificial Photosynthesis," Chem. Biol., 17, 434-447 (2010). https://doi.org/10.1016/j.chembiol.2010.05.005
  5. Allakhverdiev, S. I., Thavasi, V., Kreslavski, V. D., Zharmukhamedov, S. K., Klimov, V. V., Ramakrishna, S., Los, D. A., Miruto, M., Nishihara, H. and Carpentier, R., "Photosynthetic Hydrogen Production," J. Photochem. Photobio. C: Photochemistry reviews, 11, 87-99(2010).
  6. Kim J., Hydrogen production technology trends, Korea Institute of Science and Technology Information(KISTI)(2004).
  7. A study on high production technologies and economical estimation of hydrogen fuel, KIER-991417, 12(1999).
  8. Kim, S. J., Biological hydrogen production technology-present condition and vision, Sungkyunkwan University(2005).
  9. Park, J. W., Kim, J. M. and Yih, W. H., "Current Status of pHotobiological Hydrogen Production Technology Using Unicellular Marine Cyanobacterial Strains," J. Kor. Soc. of Oceanopraphy, 14(1), 63-68(2009).
  10. Gim, B. J. and Kim, J. W., "Economic Evaluation of Domestic Photobiological Hydrogen Production," Transactions of the Korean Hydrogen and New Energy Society, 19(4), 322-330(2008).
  11. Lee, J., Yi, Y. and Uhm, S., "Understanding Underlying Process of Water Electrolysis," J. Korean Ind. Eng. Chem., 19(4), 357-365 (2008).
  12. Lee, H.-S., Vermaas, W. F. J. and Rittmann, B. E., "Biological Hydrogen Production: Prospectives and Challenges," Trends in Biotechnology, 28(5), 262-271(2010). https://doi.org/10.1016/j.tibtech.2010.01.007
  13. Tributsch, H., "Photovoltaic Hydrogen Generation," Int. J. Hydrogen Energy, 33, 5911-5930(2008). https://doi.org/10.1016/j.ijhydene.2008.08.017
  14. Palumbo, R., Lede, J., Boutin, O., Elorza Ricart, E., Steinfeld, A., Moller, S., Weidenkaff, A., Fletcher, E. A. and Bielicki, J., "The Production of Zn from ZnO in a High-temperature Solar Decomposition Quench Process-I. The Scientific Framework for the Process," J. Chem. Eng. Sci., 53(14), 2503-2517(1998). https://doi.org/10.1016/S0009-2509(98)00063-3
  15. Stenfield, A., "Solar Hydrogen Production Via a Two-step Watersplitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions," Int. J. Hydrogen Energy, 27(6), 611-619(2002). https://doi.org/10.1016/S0360-3199(01)00177-X
  16. Kodama, T., Kondoh, Y., Yamamoto, R., Andou, H. and Sator, N., "Thermochemical Hydrogen Production by a Redox System of $ZrO_{2}$-supported Co(II)-ferrite," Solar Energy, 78, 623-631(2005). https://doi.org/10.1016/j.solener.2004.04.008
  17. Miller, J. E., Allendorf, R. B., Diver, L. R. Evans, Siegel, N. P. and Strecker, J. N., "Metal Oxide Composites and Structures for Ultra-high Temperature Solar Thermochemical Cycles," J. Mater. Sci., 43, 4714-4728(2008). https://doi.org/10.1007/s10853-007-2354-7
  18. Kodama, T., Gokon, N. and Yamamoto, R., "Thermochemical Two-step Water Splitting by $ZrO_{2}$-supported $NixFe_{3-x}O_{4}$ for Solar Hydrogen Production," Solar Energy, 82, 73-79(2008). https://doi.org/10.1016/j.solener.2007.03.005
  19. Kaneko, H., Kodama, T., Gokon, N., Tamaura, Y., Lovegrove, K. and Luzzi, A., "Decomposition of Zn-ferrite for $O_{2}$ Generation by Concentrated Solar Radiation," Solar Energy, 76, 317-322(2004). https://doi.org/10.1016/j.solener.2003.08.034
  20. Gokon, N., Mizuno, T., Nakamuro, Y. and Kodama, T., "Iron-Containing Yttria-Stabilized Zirconia System For Two-Step Thermochemical Water Splitting," J. Solar Energy Eng., 130(1), 011018- 1-011018-6(2008).
  21. Miller, E. L., Rocheleau, R. E. and Deng, X. M., "Design Considerations for a Hybrid Amorphous Silicon/photoelectrochemical Multijunction Cell for Hydrogen Production," Int. J. Hydrogen Energy, 28, 615-623(2003). https://doi.org/10.1016/S0360-3199(02)00144-1
  22. Xu, L., Garland, R. and Elam, C., "Critical Research for Cost- Effective Photoelectrochemical Production of Hydrogen," FY 2006 Annual progress report, 149-153(2006).
  23. Light, S., "2006 Energy Technology Research Award Address: Photoelectrochemical Storage of Solar Energy," Electrochemical Society Transactions, 2(28), 1-14(2007).
  24. Graetzel, M. and Augustinki, J., "Tandem Cell for Water Cleavage by Visible Light," US 6,936,143 B1(2005).

Cited by

  1. Hydrogen Impurities Analysis From Proton Exchange Membrane Hydrogen Production vol.24, pp.4, 2013, https://doi.org/10.7316/KHNES.2013.24.4.288
  2. A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network vol.52, pp.6, 2014, https://doi.org/10.9713/kcer.2014.52.6.720
  3. Fabrication of Fe-Cr-Al Porous Metal with Sintering Temperature and Times vol.22, pp.2, 2015, https://doi.org/10.4150/KPMI.2015.22.2.100
  4. Synthesis and Characterization of Covalently Cross-Linked SPEEK/Cs-substituted MoSiA/Ceria Composite Membranes with MoSiA for Water Electrolysis vol.26, pp.6, 2015, https://doi.org/10.7316/KHNES.2015.26.6.524
  5. Scenario-based Design and Life Cycle Cost Analysis of Energy Supply System for Transportation Sector vol.53, pp.2, 2015, https://doi.org/10.9713/kcer.2015.53.2.164
  6. co-catalyst effect on Photoelectrochemical Properties of GaN Photoelectrode vol.23, pp.4, 2016, https://doi.org/10.6117/kmeps.2016.23.4.113