DOI QR코드

DOI QR Code

Effect of Polymerization Condition on Atom Transfer Radical Copolymerization Behaviors of Styrene with Methyl Acrylate

스티렌과 메틸아크릴레이트의 원자 이동 라디칼 공중합에서 중합조건에 따른 중합 특성 연구

  • Song, Seon-Ja (Department of Chemical Engineering, Kongju National University) ;
  • Ko, Young Soo (Department of Chemical Engineering, Kongju National University)
  • Published : 2011.10.01

Abstract

Investigated was the effect of the crucial polymerization conditions such as methyl acrylate(MA) mole fraction in feed, polymerization temperature and time on Atom Radical Transfer Polymerization(ATRP) behavior of styrene and methyl acrylate(MA). As MA mole fraction in feed increased, molecular weight(MW) of the resulting copolymer increased. At polymerization time of 3 hrs the composition of MA in the resulting copolymer was shown to have a linear relationship with the mole fraction of MA in feed. MW was increased and the composition of MA in copolymer was decreased as the polymerization time increased, showing the characteristics of ATRP. MW was also increased as polymerization temperature increased, and the composition of MA in copolymer was shown to be increased drastically at polymerization temperature of $110^{\circ}C$.

스티렌과 메틸아크릴레이트(methyl acrylate, MA)를 원자라디칼이동 중합(atom radical transfer polymerization, ATRP)에서 주요한 중합공정 조건인 투입되는 MA 몰분율, 중합 온도, 중합 시간이 미치는 영향을 조사하였다. MA 몰분율이 증가할수록 분자량은 증가하고 중합시간이 3시간일 때 중합용액의 초기 모노머 몰 비와 생성되는 고분자의 조성비가 거의 선형 관계를 갖는다. 중합시간이 증가함에 따라 공중합체의 분자량은 증가하고, 공중합체의 MA 조성비가 감소함을 알 수 있다. 이를 통해 스티렌-MA 공중도 ATRP의 리빙 라디칼 중합 특징을 보이고 있음을 알 수 있다. 중합온도가 증가함에 따라 공중합체의 분자량은 크게 증가하고, 특히 $110^{\circ}C$의 고온에서 공중합체 내에 MA 조성비가 크게 증가함을 볼 수 있다.

Keywords

References

  1. Matyjaszewski, K., "Advances in Controlled/living Radical Polymerization," ACS Symp. Ser.(2003).
  2. Kamigaito, M., Ando, T. and Sawamoto, M., "Metal-Catalyzed Living Radical Polymerization, " Chem. Rev., 101(12), 3689-3746 (2001). https://doi.org/10.1021/cr9901182
  3. Wang, J. S. and Matyjaszewski, K., "Controlled/living Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition Metal Complexes", J. Am. Chem. Soc., 117(20), 5614-5612(1995). https://doi.org/10.1021/ja00125a035
  4. Matyjaszewski, K. and Xia, J., "Atom Transfer Radical Polymerization," Chem. Rev., 101(9), 2921-2990(2001). https://doi.org/10.1021/cr940534g
  5. Pakula, T. and Matyjaszewski, K., "Copolymers with controlled distribution of comonomers along the chain, 1. Structure, thermodynamics and dynamic properties of gradient copolymers. Computer simulation," Macromol. Theory Simul., 5(5), 987-1006(1996). https://doi.org/10.1002/mats.1996.040050514
  6. Tsarevsky, N. V. and Matyjaszewski, K., "Green Atom Transfer Radical Polymerization: From Process Design to Preparation of Well-Defined Environmentally Friendly Polymeric Materials," Chem. Rev., 107(6), 2270-2299(2007). https://doi.org/10.1021/cr050947p
  7. Matyjaszewski, K. and Tsarevsky, N. V., "Nanostructured Functional Materials Prepared by Atom Transfer Radical Polymerization," Nature Chem., 1(1), 276-288(2009). https://doi.org/10.1038/nchem.257
  8. Braunecker, W. A. and Matyjaszewski, K., "Controlled/living Radical Polymerization: Features, Developments, and Perspectives," Prog. Polym. Sci., 32(1), 93-146(2007). https://doi.org/10.1016/j.progpolymsci.2006.11.002
  9. Coessens, V., Pintauer, T. and Matyjaszewski, K., "Functional Polymers by Atom Transfer Radical Polymerization," Prog. Polym. Sci., 26(3), 337-377(2001). https://doi.org/10.1016/S0079-6700(01)00003-X
  10. Miller, P. J. and Matyjaszewski, K., "Atom Transfer Radical Polymerization of (Meth)acrylates from Poly(dimethylsiloxane) Macroinitiators," Macromolecules, 32(26), 8760-8767(1999). https://doi.org/10.1021/ma991077e
  11. Matyjaszewski, K., Goebelt, B., Paik, H.-J. and Horwitz, C. P., "Tridentate Nitrogen-Based Ligands in Cu-Based ATRP: A structure- Activity study," Macromolecules, 34(3), 430-440(2001). https://doi.org/10.1021/ma001181s
  12. Johan, P. A., Heuts, R., Mallesch, T. and Davis, P., "Atom Transfer Radical Polymerization in the Presence of a Thiol: More Evidence Supporting Radical Intermediates", Macromol. Chem. Phys. 200(6), 1380-1385(1999). https://doi.org/10.1002/(SICI)1521-3935(19990601)200:6<1380::AID-MACP1380>3.0.CO;2-O
  13. Goh, Y. T., Patel, R., Im, S. J., Kim, J. H. and Min, B. R., "Synthesis and Characterization of Poly(ether sulfone) Grafted Poly(styrene sulfonic acid) for Proton Conducting Membranes," Korean J. Chem. Eng., 26(2), 518-522(2009). https://doi.org/10.1007/s11814-009-0088-8
  14. Greeney, R. Z., in J. Bandrup, E.H. Immergut, and E.A. Grulke (Ed.), "Polymerization Handbook," Wiley, New York, 309-320 (1999).