DOI QR코드

DOI QR Code

티타니아 나노튜브(TNT) 박막의 제조 및 특성에 관한 연구

Preparation and Characterizations of Titania Nanotube Thin Films

  • 이영록 (경기대학교 화학공학과) ;
  • 정지훈 (경기대학교 화학공학과)
  • Lee, Youngrok (Department of Chemical Engineering, Kyonggi University) ;
  • Jung, Jihoon (Department of Chemical Engineering, Kyonggi University)
  • 발행 : 2011.10.01

초록

양극산화에 의해 티타니아 나노튜브(TNT) 박막과 나노필름(TNF) 박막을 제조하여 이의 광촉매 반응특성을 연구하였다. TNT 박막이 형성된 티타늄 판에 자외선을 조사하여 용액 내 메틸렌블루의 분해율을 측정하였다. TNT의 길이가 증가할수록 광촉매(PC) 반응에 의한 메틸렌블루 분해율이 증가하였다. 광전자의 재결합을 억제하기 위해 포텐셜을 가해준 광전자촉매(PEC) 반응에서는 전반적으로 분해율이 상승하였으며, 길이에 따른 분해율 차이가 상대적으로 작았다. 튜브형태가 아닌 필름형태의 TNF는 TNT에 비해 낮은 분해율을 나타내었으며, 광촉매 반응에서 분해율의 차이가 더 크게 나타났다.

Thin film of titania nanotubes(TNT) and titania nanofilms(TNF) was fabricated by anodizing for the study of the photo-catalytic reaction(PC) and photoelectrocatalytic reaction(PEC). Removal efficiency of methylene blue was investigated by UV radiation on the TNT coated titanium plate. Removal efficiency was increased with longer TNT length. Degradation efficiency of the PEC reaction was less sensitive than that of PC reaction. And Effect of TNT length is relatively small. Titania nanofilms(TNF) showed low efficiency than TNT. The efficiency drop of PC was larger than that of PEC.

키워드

참고문헌

  1. Rachel, A., Subrahmanyam, M. and Boule, P., "Comparison of Photocatalytic Efficiencies of $TiO_{2}$ in Suspended and Immobilised Form for the Photocatalytic Degradation of Nitrobenzenesulfonic Acids," Applied Catalysis B, 37(4), 301-308(2002). https://doi.org/10.1016/S0926-3373(02)00007-3
  2. Ahn, S. J., Choi, L. K. and Jung, J., "Characterization of Anodized Titanium Oxide Film and Photocatalytic Decomposition of Methylene Blue with Microcurrent," Journal of Advanced Oxidation Technologies, 10(2), 354-360(2007).
  3. Zwilling, M., Aucouturier, M. and Darque-Ceretti, E., "Anodic Oxidation of Titanium and TA6V Alloy in Chromic Media. An Electrochemical Approach," Electrochim. Acta, 45(6), 921-929(1991).
  4. Paulose, M., Shankar, K., Varghese, O. K., Mor, G. K. and Grimes, C. A., "Application of Highly-ordered $TiO_2$ Nanotube-arrays in Heterojunction Dye-Sensitized Solar Cells," J. Phys. D: Appl. Phys., 39, 2498-2503(2006). https://doi.org/10.1088/0022-3727/39/12/005
  5. Paulose, M., Varghese, O. K., Mor, G. K., Grimes, C. A. and Ong, K. G., "Unprecedented Ultra-high Hydrogen Gas Sensitivity in Undoped Titania Nanotubes," Nanotechnology, 17(2), 398-402(2006). https://doi.org/10.1088/0957-4484/17/2/009
  6. Mor, G. K., Shankar, K., Varghese, O. K. and Grimes, C. A., "Photoelectrochemical Properties of Titania Nanotubes," J. Mater. Res., 19, 2989-2996(2004). https://doi.org/10.1557/JMR.2004.0370
  7. Mor, G. K., Shankar, K., Paulose, M., Varghese, O. K. and Grimes, C. A., "Enhanced Photocleavage of Water Using Titania Nanotube Arrays," Nano Lett, 5(1), 191-195(2005). https://doi.org/10.1021/nl048301k
  8. Raja, K. S., Misra, M., Mahajan, V. K., Gandhi, T., Pillai, P. and Mohapatra, S. K., "Photo-electrochemical Hydrogen Generation Using Band-gap Modified Nanotubular Titanium Oxide in Solar Light," J. Power Sources, 161, 1450-1457(2006). https://doi.org/10.1016/j.jpowsour.2006.06.044
  9. Raja, K. S., Mahajan, V. K. and Misra, M., "Determination of Photo Conversion Efficiency of Nanotubular Titanium Oxide Photoelectrochemical Cell for Solar Hydrogen Generation," J. Power Sources, 159, 1258-1265(2006). https://doi.org/10.1016/j.jpowsour.2005.12.036
  10. Macak, J. M., Tsuchiya, H., Ghicov, A. and Schmuki, P., "A New Concept Hybrid Electrochemical Surpercapacitor: Carbon/ $LiMn_{2}O_{4}$ Aqueous System," Electrochem. Commun., 7, 1138-1142 (2005). https://doi.org/10.1016/j.elecom.2005.08.017
  11. Perez-Blanco, J. M. and Barber, G. D., "Ambient Atmosphere Bonding of Titanium Foil to A transparent Conductive," Solar Energy Materials and Solar Cells, 92(9), 997-1002(2008). https://doi.org/10.1016/j.solmat.2008.02.041
  12. Yang, D. J., Park, H., Cho, S. J., Kim, H. G. and Choi, W. Y., "$TiO_{2}$-nanotube-based Dye-sensitized Solar Cells Fabricated by An Efficient Anodic Oxidation for High Surface Area," J. Phys. Chem. Solids, 69(5-6), 1272-1275(2008). https://doi.org/10.1016/j.jpcs.2007.10.107
  13. Pillai, P., Raja, K. S. and Misra, M., "Electrochemical Storage of Hydrogen in Nanotubular $TiO_{2}$ Arrays," J. Power Sources, 161, 524-530(2006). https://doi.org/10.1016/j.jpowsour.2006.03.088
  14. Macak, J. M., Tsuchiya, H., Bauer, S., Ghicov, A., Schmuki, P., Barczuk, P. J., Nowakowska, M. Z., Chojak, M. and Kulesza, P. J., "Self-Organized Nanotubular $TiO_{2}$ Matrix as Support for Dispersed Pt/Ru nanoparticles: Enhancement of the Electrocatalytic Oxidation of Methanol," Electrochem. Commun., 7, 1417(2005). https://doi.org/10.1016/j.elecom.2005.09.031

피인용 문헌

  1. 티타니아 나노튜브를 이용한 염료감응 태양전지 vol.56, pp.4, 2011, https://doi.org/10.9713/kcer.2018.56.4.447