DOI QR코드

DOI QR Code

Modeling of a Pervaporation Process for Concentrating Hydrogen Peroxide

과산화수소 농축을 위한 투과증발공정 모델링

  • Nguyen, Huu Hieu (School of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Lee, Sung Taek (School of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Choi, Soo Hyoung (School of Semiconductor and Chemical Engineering, Chonbuk National University)
  • 구옌후휴 (전북대학교 반도체.화학공학부) ;
  • 이성택 (전북대학교 반도체.화학공학부) ;
  • 최수형 (전북대학교 반도체.화학공학부)
  • Published : 2011.10.01

Abstract

The objective of this study is to propose a mathematical model for a pervaporation process for concentrating hydrogen peroxide. The process was developed by NASA, which consists of a shell and membrane tubes, where a liquid hydrogen peroxide solution flows in the shell, and a sweep gas flows in the tubes countercurrent to each other. The liquid retentate is concentrated as more water molecules permeate and evaporate through the membrane than hydrogen peroxide. For this process, a mathematical model has been developed in the form of a system of nonlinear partial differential algebraic equations based on a sorption-diffusion mechanism for permeation, an Arrhenius relationship for the temperature dependency of the permeate flux, and mass and momentum balances for the liquid concentrations and flows in the membrane module. The dynamic behavior of the concentration of hydrogen peroxide in the retentate side has been simulated by solving a simplified version of the proposed model, and the result is compared with the experimental data reported in the NASA patent.

본 연구의 목적은 과산화수소 농축을 위한 투과증발공정의 수학적 모델을 제시하는 것이다. 대상공정은 NASA에서 개발한 것으로 쉘과 멤브레인 튜브들로 구성되어 있다. 쉘과 튜브에는 각각 과산화수소용액과 sweep gas가 향류로 흐른다. 이때 막을 통해 투과증발되는 기체에는 과산화수소보다 물분자가 더 많기 때문에 과산화수소를 농축할 수 있다. 이 공정의 수학적 모델은 투과물의 흡수-확산 메커니즘에 기초한 비선형 편미분 및 대수 방정식, 투과물 플럭스의 온도 의존성에 대한 아레니우스 관계, 그리고 막 모듈 내의 액상 농도와 흐름에 대한 질량 및 운동량 수지식의 형태로 개발하였다. 과산화수소 농축물 농도의 동적 거동은 제안된 모델의 단순화된 형태를 풀어 모사하였고 그 결과값을 NASA 특허에서 보고된 실험자료와 비교하였다.

Keywords

References

  1. Jones, C. W., Applications of Hydrogen Peroxide and Derivatives, The Royal Society of Chemistry, MPG Books Ltd, Bodmin, Cornwall, UK(1999).
  2. Martin, J. M. C., Brieva, G. B. and Fierro, J. L. G., "Hydrogen Peroxide Synthesis: An Outlook Beyond The Anthraquinone Process," Angew. Chem. Int. Ed., 45, 6962-6984(2006). https://doi.org/10.1002/anie.200503779
  3. Ventura, M., Wernimont, E., Heister, S. and Yuan, S., "Rocket Grade Hydrogen Peroxide (RGHP) for use in Propulsion and Power Devices - Historical Discussion of Hazards," American Institute of Aeronautics and Astronautics - AIAA(2007).
  4. Parrish, C. F., "Concentration of Hydrogen Peroxide", U.S. Patent 7122166 B2(2006).
  5. Olsson, J. and Trägårdh, G., "Pervaporation of Volatile Organic Compounds from Water I. Influence of Permeate Pressure on Selectivity," J. Membr. Sci., 187, 23-37(2001). https://doi.org/10.1016/S0376-7388(00)00679-7
  6. Dutta, B. K., Ji, W. and Sikdar, S. K., "Pervaporation: Principles and Applications," Sep. Purif. Methods, 25(2), 131-224(1997).
  7. Huang, R. Y. M. (Ed.), Pervaporation Membrane Separation Processes, Elsevier, Amsterdam(1991).
  8. Lipnizki, F. and Tragardh, G., "Modeling of Pervaporation: Models to Analyze and Predict the Mass Transport in Pervaporation," Sep. Purif. Methods, 30, 49-125(2001). https://doi.org/10.1081/SPM-100102985
  9. Pereira, C. C., Ribeiro, Jr. C. P., Nobrega, R. and Borges, C. P., "Review: Pervaporative Recovery of Volatile Aroma Compounds from Fruit Juices," J. Membr. Sci., 274, 1-23(2006). https://doi.org/10.1016/j.memsci.2005.10.016
  10. Wijmans, J. G. and Baker, R. W., "The Solution-Diffusion Model: A Review," J. Membr. Sci., 107, 1-21(1995). https://doi.org/10.1016/0376-7388(95)00102-I
  11. Schumb, W. C., Satterfield, C. N. and Wentworth, R. L., "Hydrogen Peroxide," Amer.Chem. Soc. Monograph, 128(1955).
  12. Parrish, C. F., "Hydrogen Peroxide Concentrator," NASA Tech Briefs 2294(2007).
  13. Bird, R. B., Stewart, W. E. and Lightfoot, E. N., Transport phenomena, 2nd ed., Wiley(2002).
  14. Perry, R. H. and Green, D. W., Perry's chemical engineers' handbook, 7th ed., McGraw-Hill, New York(1999).
  15. Miley, G. H., Hawkins, G. and Englander, J., "Development of a Coupled 2D-3D Fuel Cell Model for flow Field Analysis," COMSOL Users Conference, Boston(2006).
  16. Logan, B. E., Microbial Fuel Cells, Wiley(2008).

Cited by

  1. Quantitative Risk Analysis of a Pervaporation Process for Concentrating Hydrogen Peroxide vol.52, pp.6, 2014, https://doi.org/10.9713/kcer.2014.52.6.750