DOI QR코드

DOI QR Code

Methanol-to-Olefin Reaction over MWW and MFI Zeolites: Effect of Pore Structure on Product Distribution and Catalyst Deactivation

MWW와 MFI 제올라이트에서 메탄올의 올레핀으로 전환 반응: 세공 구조가 생성물 분포와 촉매의 활성 저하에 미치는 영향

  • Song, Ki Won (School of Applied Chemical Engineering and the Institute for Catalysis Research, Chonnam National University) ;
  • Seo, Gon (School of Applied Chemical Engineering and the Institute for Catalysis Research, Chonnam National University) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University)
  • 송기원 (전남대학교 응용화학공학부) ;
  • 서곤 (전남대학교 응용화학공학부) ;
  • 신채호 (충북대학교 화학공학과)
  • Published : 2011.10.01

Abstract

Methanol-to-olefin (MTO) reaction was studied over MWW zeolite with independently developed two pores (circular and straight) and MFI zeolite with intercrossed sinusoidal and straight pores in order to investigate the effect of pore structure on their catalytic behavior. MWW and MFI zeolites with similar acidity exhibited commonly high conversion and slow deactivation in the MTO reaction, but their product selectivities were considerably different: linear hydrocarbons of $C_3-C_9$ were mainly produced on MWW, while the yield of $C_2{^=}$ and aromatics were high on MFI. Polyaroamatic hydrocarbons (PAHs) were accumulated on MWW, but a small amount of benzene and aromatics on MFI. The impregnation of phosphorous on MWW caused significant decreases in the catalytic activity and toluene adsorption, but the decreases were relatively small on MFI. Although the straight pores of MWW were inactive in the MTO reaction due to the accumulation of PAHs, its circular pores which suppressed the formation of PAHs sustained catalytic activity for the production of linear hydrocarbons. Therefore, the impregnation of phosphorous on the circular pores of MWW caused a significant decrease in catalytic activity. The phosphorous impregnation on the cross sections of MFI altered the product selectivity due to the neutralization of strong acid sites, but catalytic deactivation was negligible. The difference of MWW and MFI zeolites in the MTO reaction was explained by their difference in pore structure.

원형 세공과 선형 세공이 독립적으로 발달한 MWW와 구부러진 세공과 선형 세공이 서로 교차하는 MFI 제올라이트에서 세공 구조가 메탄올의 저급 올레핀으로 전환(MTO) 반응에서 생성물 분포와 활성 저하에 미치는 영향을 조사하였다. 산성도가 비슷한 MWW와 MFI 제올라이트는 MTO 반응에서 전환율이 높고 활성 저하가 느린 점이 서로 비슷하지만, MWW에서는 $C_3-C_9$의 선형 탄화수소가 많이 생성되나 MFI에서는 $C_2{^=}$와 방향족 화합물의 수율이 높았다. MTO 반응 중 MWW에는 다고리 방향족 화합물(PAHs)이 많이 축적되나 MFI에서는 벤젠과 나프탈렌 유도체만 생성되었다. MFI와 달리 MWW에 인을 담지하면 MTO 반응에서 촉매 활성과 톨루엔의 흡착량이 크게 줄었다. MWW의 선형 세공에는 MTO 반응 중 PAHs가 축적되어 활성이 없어지나 PAHs가 생성되지 않은 원형 세공에서 선형 탄화수소가 생성된다. 그러나 원형 세공에 인이 담지되면 세공이 막혀 활성이 크게 줄어든다. MFI에는 세공 교차 부분에 인이 담지되어 강한 산점이 중화되어 생성물 분포는 달라지나 활성은 저하되지 않았다. 세공 구조의 차이로 MTO 반응에서 MWW와 MFI의 촉매로서 거동 차이를 설명하였다.

Keywords

References

  1. Park, Y. K., Jeon, J. Y., Han, S. Y., Kim, J. R. and Lee, C. W., "Catalytic Cracking of Naphtha into Light Olefins," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 41, 549-557(2003).
  2. Towfighi, J., Zimmermann, H., Karimzadeh, R. and Akbarnejad, M. M., "Steam Cracking of Naphtha in Packed Bed Reactors," Ind. Eng. Chem. Res., 41, 1419-1424(2002). https://doi.org/10.1021/ie010636e
  3. Park, J. Y., Lee, Y. J., Jun, K. W., Bae, J. W., Viswanadham, N. and Kim, Y. H., "Direct Conversion of Synthesis Gas to Light Olefins Using Dual Bed Reactor," J. Ind. Eng. Chem., 15, 847-853(2009). https://doi.org/10.1016/j.jiec.2009.09.011
  4. Karimi, A., Ahmadi, R., Bozorg Zadeh, H. R., Jebreili Jolodar, A. and Barkhordarion, A., "Catalytic Oxidative Coupling of Methane - Experimental Investigation and Optimization of Operational Conditions," Petroleum & Coal, 49, 36-40(2007).
  5. Dubois, D. R., Obrzut, D. L., Liu, J., Thundimadathil, J., Adekkanattu, P. M., Guin, J. A., Punnoose, A. and Seehra, M. S., "Conversion of Methanol to Olefins over Cobalt-, Manganeseand Nickel-incorporated SAPO-34 Molecular Sieves," Fuel Process. Technol., 83, 203-218(2003). https://doi.org/10.1016/S0378-3820(03)00069-9
  6. Park, J. W., Lee, J. Y., Kim, K. S., Hong, S. B. and Seo, G., "Effects of Cage Shape and Size of 8-membered Ring Molecular Sieves on Their Deactivation in Methanol-to-olefin (MTO) Reactions," Appl. Catal. A: Gen., 339, 36-44(2008). https://doi.org/10.1016/j.apcata.2008.01.005
  7. Chae, H. J., Song, Y. H., Jeong, K. E., Kim, C. U. and Jeong, S. Y., "Physicochemical Characteristics of ZSM-5/SAPO-34 Composite Catalyst for MTO Reaction," J. Physics Chem. Solids, 71, 600-603(2010). https://doi.org/10.1016/j.jpcs.2009.12.046
  8. Zhang, S., Zhang, B., Gao, Z. and Han, Y., "Methanol to Olefin over Ca-Modified HZSM-5 Zeolites," Ind. Eng. Chem. Res., 49, 2103-2106(2010). https://doi.org/10.1021/ie901446m
  9. Min, H. K., Park, M. B. and Hong, S. B., "Methanol-to-olefin Conversion over H-MCM-22 and H-ITQ-2 Zeolites," J. Catal., 271, 186-194(2010). https://doi.org/10.1016/j.jcat.2010.01.012
  10. Liu, J., Zhang, C., Shen, Z., Hua, W., Tang, Y., Shen, W., Yue, Y. and Xu, H., "Methanol to Propylene: Effect of Phosphorus on a High Silica HZSM-5 Catalyst," Catal. Commun., 10, 1506-1509 (2009). https://doi.org/10.1016/j.catcom.2009.04.004
  11. Kaarsholm, M., Joensen, F., Nerlov, J., Cenni, R., Chaouki, J. and Patiencea, G. S., "Phosphorous Modified ZSM-5: Deactivation and Product Distribution for MTO," Chem. Eng. Sci., 62, 5527-5532(2007). https://doi.org/10.1016/j.ces.2006.12.076
  12. Dahl, I. M. and Kolboe, S., "On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34," J. Catal., 149, 458-464(1994). https://doi.org/10.1006/jcat.1994.1312
  13. Song, W., Haw, J. F., Nicholas, J. B. and Hemeghan, C. S., "Methylbenzenes are the Organic Reaction Centers for Methanol- to-olefin Catalysis on HSAPO-34," J. Am. Chem. Soc., 122, 10726-10727(2000). https://doi.org/10.1021/ja002195g
  14. Seo, G. and Min, B. G., "Mechanism of Methanol Conversion over Zeolite and Molecular Sieve Catalysts," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 44, 329-339(2006).
  15. Haw, J. F. and Marcus, D. M., "Well-defined (supra)molecular Structures in Zeolite Methanol-to-olefin Catalysis," Top. Catal., 34, 41-48(2005). https://doi.org/10.1007/s11244-005-3798-0
  16. Park, J. W. and Seo, G., "IR Study on Methanol-to-olefin Reaction over Zeolites with Different Pore Structures and Acidities," Appl. Catal. A: Gen., 356, 180-188(2009). https://doi.org/10.1016/j.apcata.2009.01.001
  17. Ravishankar, R., Bhattacharya, D., Jacob, N. E. and Sivasanker, S., "Characterization and Catalytic Properties of Zeolite MCM- 22," Microporous. Mater., 4, 83-93(1995). https://doi.org/10.1016/0927-6513(94)00086-B
  18. Kim, S. J., Park, J. W., Lee, K. Y., Seo, G., Song, M. K. and Jeong, S. Y., "Enhanced Catalytic Performance of Copper-exchanged SAPO-34 Molecular Sieve in Methanol-to-olefin Reaction," J. Nanosci. Nanotechnol., 10, 147-157(2010). https://doi.org/10.1166/jnn.2010.1506
  19. Park, J. W., Kim, J. H. and Seo, G., "The Effect of Pore Shape on the Catalytic Performance of Zeolites in the Liquid-phase Degradation of HDPE," Polym. Degrad. Stab., 76, 495-501(2002). https://doi.org/10.1016/S0141-3910(02)00059-9
  20. Robson, H. and Lillerud, K. P., Verified Syntheses of Zeolitic Materials, 2nd ed., Elesvier, Amsterdam(2001).
  21. Katada, N., Igi, H., Kim, J. H. and Niwa, M., "Determination of the Acidic Properties of Zeolite by Theoretical Analysis of Temperature- programmed Desorption of Ammonia Based on Adsorption Equilibrium," J. Phys. Chem., 101, 5969-5977(1997). https://doi.org/10.1021/jp971452+
  22. Rodriguez-Gonzalez, L., Hermes, F., Bertmer, M., Rodriguez- Castellon, E., Jimenez-Lopez, A. and Simon, U., "The Acid Properties of H-ZSM-5 as Studied by $NH_{3}$-TPD and $^{21}Al$-MAS-NMR Spectroscopy," Appl. Catal. A: Gen., 328, 174-182(2007). https://doi.org/10.1016/j.apcata.2007.06.003
  23. Hajjar, R., Millot, Y., Man, P. P., Che, M. and Dzwigaj, S., "Two Kinds of Framework Al Sites Studied in BEA Zeolite by X-ray Diffraction, Fourier Transform Infrared Spectroscopy, NMR Techniques, and V Probe," J. Phys. Chem. C., 112, 20167-20175 (2008). https://doi.org/10.1021/jp808356q
  24. Li, H. X. and Armor, J. N., "Low-silica EMT/FAU Intergrowth Zeolites with Si/Al = 1.0," Micropor. Mater., 9, 51-57(1997). https://doi.org/10.1016/S0927-6513(96)00091-0
  25. Liu, L., Cheng, M., Ma, D., Hu, G., Pan, X. and Bao, X., "Synthesis, Characterization, and Catalytic Properties of MWW Zeolite with Variable Si/Al Ratios," Micropor. Mesopor. Mater., 94, 304-312(2006). https://doi.org/10.1016/j.micromeso.2006.04.003
  26. Fu, J. and Ding, C., "Study on Alkylation of Benzene with Propylene over MCM-22 Zeolite Catalyst by in situ IR," Catal. Commun., 6, 770-776(2005). https://doi.org/10.1016/j.catcom.2005.07.011
  27. http://www.iza-structure.org/databases/ModelBuilding/MWW.pdf.
  28. Diaz, I., Kokkoli, E., Terasaki, O. and Tsapatsis, M., "Surface Structure of Zeolite (MFI) Crystals," Chem. Mater., 16, 5226-5232 (2004). https://doi.org/10.1021/cm0488534

Cited by

  1. Methanol-to-Olefin Conversion over Zeolite Catalysts: Active Intermediates and Deactivation vol.17, pp.3-4, 2013, https://doi.org/10.1007/s10563-013-9157-4