DOI QR코드

DOI QR Code

Operating Characteristics of 1 $Nm^3/h$ Scale Synthetic Natural Gas(SNG) Synthetic Systems

1 $Nm^3/h$ 규모 합성천연가스(SNG) 합성 시스템의 운전 특성

  • Kim, Jin-Ho (Plant Engineering Center, Institute for Advances Engineering) ;
  • Kang, Suk-Hwan (Plant Engineering Center, Institute for Advances Engineering) ;
  • Ryu, Jae-Hong (Plant Engineering Center, Institute for Advances Engineering) ;
  • Lee, Sun-Ki (Plant Engineering Center, Institute for Advances Engineering) ;
  • Kim, Su-Hyun (Plant Engineering Center, Institute for Advances Engineering) ;
  • Kim, Mun-Hyun (Plant Engineering Center, Institute for Advances Engineering) ;
  • Lee, Do-Yeon (Plant Engineering Center, Institute for Advances Engineering) ;
  • Yoo, Yong-Don (Plant Engineering Center, Institute for Advances Engineering) ;
  • Byun, Chang-Dae (POSCO Center) ;
  • Lim, Hyo-Jun (POSCO Center)
  • 김진호 (고등기술연구원 플랜트엔지니어링센터) ;
  • 강석환 (고등기술연구원 플랜트엔지니어링센터) ;
  • 류재홍 (고등기술연구원 플랜트엔지니어링센터) ;
  • 이선기 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김수현 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김문현 (고등기술연구원 플랜트엔지니어링센터) ;
  • 이도연 (고등기술연구원 플랜트엔지니어링센터) ;
  • 유영돈 (고등기술연구원 플랜트엔지니어링센터) ;
  • 변창대 (포스코) ;
  • 임효준 (포스코)
  • Published : 2011.08.01

Abstract

In this work, we proposed the three different reactor systems for evaluating of synthetic natural gas(SNG) processes using the synthesis gas consisting of CO and $H_2$ and reactor systems to be considered are series adiabatic reaction system, series adiabatic reaction system with the recirculation and cooling wall type reaction system. The maximum temperature of the first adiabatic reactor in series adiabatic reaction system raised to 800. From the these results, carbon dioxide in product gas as compared to other systems was increased more than that expected due to water gas shift reaction(WGSR) and the maximum $CH_4$ concentration in SNG was 90.1%. In series adiabatic reaction system with the recirculation as a way to decrease the temperature in catalyst bed, the maximum $CH_4$ concentration in SNG was 96.3%. In cooling wall type reaction system, the reaction heat is absorbed by boiling water in the shell and the reaction temperature is controlled by controlling the amount of flow rate and pressure of feed water. The maximum $CH_4$ concentration in SNG for cooling wall type reaction system was 97.9%. The main advantage of the cooling wall type reaction system over adiabatic systems is that potentially it can be achieve almost complete methanation in one reactor.

본 연구에서는 CO, $H_2$가 주성분인 모사합성가스를 이용하여 합성천연가스(SNG, Synthetic Natural Gas) 제조공정을 평가하기 위하여, 3종류의 SNG 합성반응시스템을 제안하였다. 제시된 공정은 다단 단열반응시스템, 재순환이 있는 다단 단열반응시스템 그리고 강제냉각방식의 수냉각반응시스템이다. 3개의 연속된 반응기로 구성된 다단 단열반응시스템에서의 1차반응기에서는 온도가 최대 $800^{\circ}C$까지 상승하였으며, 이로 인한 수성가스전환반응으로 인해 $CO_2$가 다른 시스템에 비해 많이 생성되었으며, SNG 내의 $CH_4$ 농도는 90.1% 정도를 얻었다. 다단 단열반응시스템의 문제점을 해결하기 위해 재순환이 있는 다단 단열반응시스템에서는 반응기의 온도제어를 위해 일부 전환가스를 재순환한 것으로, $CH_4$는 최대 96.3%를 얻었다. 이러한 다수개의 반응기로 구성된 단열반응기의 단점을 해결하여 반응기 개수를 줄일 수 있는 쉘과 튜브 형태의 반응기로 구성된 강제냉각방식의 수냉각시스템에서는 쉘 측으로 냉각수를 공급하여 반응열을 흡수하는 형태로, 공급되는 냉각수의 유량과 압력에 의해 온도를 제어할 수 있다. 이 시스템에서는 최대 $CH_4$는 최대 99.2%를 얻었으며, 1차 반응기인 강제냉각방식의 수냉각반응기 출구에서의 97% 이상의 $CH_4$ 농도를 얻을 수 있음을 확인하였다.

Keywords

References

  1. Nagase, S., Takami, S., Hirayama, A. and Hirai, Y., "Development of a High Efficiency Substitute Natural Gas Production Process," Catalysis Today, 45, 393(1998). https://doi.org/10.1016/S0920-5861(98)00273-9
  2. NETL, A Current Perspective On the Gasification Industry, 2005 .
  3. Kopyscinski, J., Schildhauer, T. J. and Biollaz, S. M. A., "Production of Synthetic Natural Gas (SNG) from Coal and Dry Biomass A Technology Review from 1950 to 2009," Fuel, 89, 1763(2010). https://doi.org/10.1016/j.fuel.2010.01.027
  4. Gassner, M. and Marechal, F., "Thermo-economic Process Model for Thermochemical Production of Synthetic Natural Gas (SNG) from Lignocellulosic Biomass," Biomass Bioenergy., 33, 1587 (2009). https://doi.org/10.1016/j.biombioe.2009.08.004
  5. Kang, S. H., Bae, J. W., Sai Prasad, P. S., Oh, J. H., Jun, K. W., Song, S. L. and Min, K. S., "Influence of Ga Addition on the Methanol Synthesis Activity of Cu/ZnO Catalyst in the Presence and Absence of Alumina," J. Ind. Eng. Chem., 15, 665(2009). https://doi.org/10.1016/j.jiec.2009.09.041
  6. Kang, S. H., Woo, K. J., Bae, J. W., Jun, K. W. and Kang, Y., "Hydrogenation of CO on Supported Cobalt $\gamma$-$Al_{2}O_{3}$ Catalyst in Fixed Bed and Slurry Bubble Column Reactors," Korean J. Chem. Eng., 26, 1533(2009). https://doi.org/10.1007/s11814-009-0260-1
  7. Hoehlein, B., Menzer, R. and Range, J., "High Temperature Methanation in the Long-distance Nuclear Energy Transport System," Appl Catal., 1, 125(1981). https://doi.org/10.1016/0166-9834(81)80001-2
  8. Haldor Topsoe, From coal to substitute natural gas using TREMP, Technical report, Haldor Topsoe, 2008.
  9. Lohmueller, R., Linde-Berichte aus Technik und Wissenschaft, 41, 3(1977).
  10. Yoo, Y. D., Kim, S. H., Yun, Y. S. and Jin, G. T., "Conversion Technology from to Coal to Synthetic Natural Gas," KIC News, 12, 38(2009).
  11. Seglin, L., Methanation of Synthesis Gas, American Chemical Sociaty, 1974.
  12. Twigg, M. V., Catalyst handbook, Wolfe Publishing Ltd., 1989.
  13. de Deugd, R. M., Kapteijn, F. and Moulijn, J. A., "Trends in Fischer-Tropsch Reactor Technology-opportunities for Structured Reactors," Top. Catal., 26, 29(2003). https://doi.org/10.1023/B:TOCA.0000012985.60691.67
  14. Davis, B. H., "Fischer-Tropsh Synthesis: Overview of Reactor Development and Future Potentialities," Top. Catal., 32, 143(2005). https://doi.org/10.1007/s11244-005-2886-5
  15. Bartholomew, C. H., "Carbon Deposition in Steam Reforming and Methanation," Catal. Rev., 24, 67(1982). https://doi.org/10.1080/03602458208079650

Cited by

  1. Operating Characteristics of a 0.25 MW Methanation Pilot Plant with Isothermal Reactor and Adiabatic Reactor vol.19, pp.2, 2013, https://doi.org/10.7464/ksct.2013.19.2.156
  2. vol.20, pp.1, 2014, https://doi.org/10.7464/ksct.2014.20.1.057
  3. vol.41, pp.3, 2016, https://doi.org/10.1002/er.3605
  4. 고농도 메탄의 합성천연가스 생산을 위한 상업용 촉매의 반응특성; 운전조건에 대한 영향 vol.24, pp.2, 2011, https://doi.org/10.7464/ksct.2018.24.2.099
  5. 파일럿 규모의 공정에서 CO2가 함유된 합성가스로부터 합성천연가스(SNG) 생산 vol.57, pp.3, 2011, https://doi.org/10.9713/kcer.2019.57.3.420