DOI QR코드

DOI QR Code

Silica Filler Addition Effect on the Ion Conductivity of PEO Composite Electrolytes Blended with Poly(ethylene imine)

폴리에틸렌 이민과 혼합된 PEO 복합체 전해질의 이온 전도도에 미치는 실리카 필러 첨가 효과

  • Kim, Juhyun (Department of Chemical and Biochemical Engineering, Pusan National University) ;
  • Kim, Kwang Man (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute) ;
  • Lee, Young-Gi (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute) ;
  • Jung, Yongju (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Seok (Department of Chemical and Biochemical Engineering, Pusan National University)
  • 김주현 (부산대학교 화공생명공학부) ;
  • 김광만 (한국전자통신연구원 융합부품소재연구부문 전력제어소자팀) ;
  • 이영기 (한국전자통신연구원 융합부품소재연구부문 전력제어소자팀) ;
  • 정용주 (한국기술교육대학교 응용화학공학과) ;
  • 김석 (부산대학교 화공생명공학부)
  • Published : 2011.08.01

Abstract

In this study, poly(ethyleneoxide) and poly(ethylene imine) polymer blends containing fumed silica fillers were studied in order to enhance the ion conductivity and interfacial properties. Lithium perchlorate ($LiClO_4$) as a salt, and silica($SiO_2$) as the inorganic filler were introduced into the polymer composite electrolyte composites and the composites were examined to evaluate their ionic conductivity for a possibility test of electrolyte application. As the diameter of semicircle in an impedance test became smaller, ionic conductivity of composite electrolytes had been enhanced by addition of 20 wt% silica filler. However, the conductivity was not greatly changed over 20 wt% content because the silica was sufficiently saturated in the polymer electrolytes. Diffraction peaks of PEO became weaker with the addition of inorganic fillers using XRD analysis. It showed that a crystallinity was proportionally reduced by increasing filler contents. The morphology of composite electrolyte films has been investigated by SEM. The heterogeneous morphology which silica was evenly dispersed by the strong adhesion of PEI was shown at higher contents of silica.

본 연구는 이온전도도와 계면 특성을 향상시키기 위해 PEO, poly(ethylene oxide)와 PEI, poly(ethylenimine)의 블렌드에 무기 필러인 실리카를 첨가한 고분자 전해질을 조사하였다. 리튬염으로 $LiClO_4$를 사용하고 무기 필러로서 실리카($SiO_2$)를 고분자 복합체 전해질에 첨가해서 전해질 응용 가능성 측정을 위해 AC임피던스법을 이용하여 이온전도도를 측정하였다. 임피던스 측정에서 무기 필러의 첨가량이 증가함에 따라 반원의 크기가 점점 감소하는 것은, 이온전도도가 첨가량이 20 wt%가 될 때까지 증가하는 경향을 보여주었다. 하지만, 첨가량이 20 wt% 이상이 되었을 때는 앞서 측정한 이온전도도와 큰 차이가 없어 무기 필러가 포화 상태가 됨을 알 수 있었다. XRD 분석을 이용하여 PEO의 회절 피크가 감소함을 알 수 있었는데, 무기 필러의 첨가로 인해 결정화도가 감소됨을 알 수 있었다. 전해질 막의 형태학 구조 변화를 알아보기 위해 SEM 분석을 이용하였는데, 실리카 함량이 높을 때, 더 비균일한 형태학적 구조, 즉 실리카가 강한 결착력을 지니는 PEI로 인해 고르게 분산되어 있는 형태를 보였다.

Keywords

References

  1. van Schalkwijk, W. A. and Scrosati, B., "Advances in Lithium- Ion Batteries," Kluwer Academic, New York, 2002.
  2. Nazri, G. A. and Pistoia, G., "Lithium Batteries," Kluwer Academic, New York, 2004.
  3. Fonseca, C. P., Rosa, D. S., Gaboardi, F. and Neves, S., "Development of a Biodegradable Polymer Electrolyte for Rechargeable Batteries," J. Power Sources, 155, 381(2006). https://doi.org/10.1016/j.jpowsour.2005.05.004
  4. Dias, F. B., Plomp, L. and Veldhuis Jakobert, B. J., "Trends in Polymer Electrolytes for Secondary Lithium Batteries," J. Power Sources, 88, 169(2000). https://doi.org/10.1016/S0378-7753(99)00529-7
  5. Meyer, W. H., "Polymer Electrolytes for Lithium-ion Batteries," Adv. Mater., 10, 439(1998). https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
  6. Song, J. Y., Wang, Y. Y. and Wan, C. C., "Review of Gel-type Polymer Electrolytes for Lithium-ion Batteries," J. Power Sources, 77, 183(1999). https://doi.org/10.1016/S0378-7753(98)00193-1
  7. Fenton, D. E., Parker, J. M. and Wright, P. V., "Complexes of Alkali Metal Ions with Poly(ethylene oxide)," Polymer, 14, 589 (1973).
  8. Appetecchi, G. B., Shin, J. H., Alessandrini, F. and Passerini, S., "0.6 Ah Li/$V_{2}O_{5}$ Battery Prototypes Based on Solvent-free $PEOLiN(SO_{2}CF_{2}CF_{3})_{2}$ Polymer Electrolytes," J. Power Sources, 143, 236(2005). https://doi.org/10.1016/j.jpowsour.2004.11.039
  9. Kim, D. W., "Electrochemical Characterization of Poly(ethyleneco- methyl acrylate)-based Gel Polymer Electrolytes for Lithiumion Polymer Batteries," J. Power Sources, 87, 78(2000). https://doi.org/10.1016/S0378-7753(99)00363-8
  10. Tarascon, J. M. and Armand, M. B., "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414, 359(2001). https://doi.org/10.1038/35104644
  11. Gray, F. M., "Polymer Eleetrolytes," Royal Society of Chemistry, Cambridge, 1997.
  12. Croce, F., Appetecchi, G. B., Persi, L. and Scrosati, B., "Nanocomposite Polymer Electrolytes for Lithium Batteries," Nature, 394, 456(1998). https://doi.org/10.1038/28818
  13. Kim, S. C., Oh, T. H., Kim, D. W., Lee, C. J. and Kang, Y. K., "Ion-Conducting Hyperbranched PEG Electrolytes Derived from Poly(glycidol)," Macromol. Res., 17, 141(2009). https://doi.org/10.1007/BF03218669
  14. Dissanayake, M. A. K. L., Jayathilaka, P. A. R. D., Bokalawala, R. S. P., Albinsson, I. and Mellandar, B. E., "Effect of Concentration and Grain Size of Alumina Filler on the Ionic Conductivity Enhancement of the $(PEO)_{9}LiCF_{3}SO_{3} : Al_{2}O_{3} $ Composite Polymer Electrolyte," J. Power Sources, 409, 119(2003).
  15. Krejza, O., Velicka, J., Sedlaoikova, M. and Vondrak, J., "The Presence of Nanostructured $Al_{2}O_{3}$ in PMMA-based Gel Electrolytes," J. Power Sources, 178, 774(2008). https://doi.org/10.1016/j.jpowsour.2007.11.018
  16. Kumar, B. and Scanlon, L. G., "Polymer-ceramic Composite Electrolytes: Conductivity and Thermal History Effects," Solid State Ionics, 124, 239(1999). https://doi.org/10.1016/S0167-2738(99)00148-4
  17. Jeon, J. D., Kim, M. J. and Kwak, S. Y., "Effects of Addition of $TiO_{2}$ Nanoparticles on Mechanical Properties and Ionic Conductivity of Solvent-free Polymer Electrolytes Based on Porous P(VdFHFP)/ P(EO-EC) Membranes," J. Power Sources, 162, 1304(2006). https://doi.org/10.1016/j.jpowsour.2006.08.022
  18. Aravindan, V., Vickraman, P. and Krishnaraj, K., "$Li^{+}$ ion Conduction in $TiO_{2}$ Filled Polyvinylidenefluoride-co-hexafluoroproPylene Based Novel Nanocomposite Polymer Electrolyte Membranes with LiDFOB," Curr. Appl. Phys., 9, 1474(2009). https://doi.org/10.1016/j.cap.2009.04.001
  19. Shin, J. H., Alessandrini, F. and Passerini, S., "Comparison of Solvent-Cast and Hot-Pressed $P(EO)_{20}LiN(SO_{2}CF_{2}CF_{3})_{2}$ Polymer Electrolytes Containing Nanosized $SiO_{2}$," J. Electrochem. Soc., 152, A283(2005). https://doi.org/10.1149/1.1846713
  20. Stephan, A. M. and Nahm, K. S., "Review on Composite Polymer Electrolytes for Lithium Batteries," Polymer, 47, 5952(2006). https://doi.org/10.1016/j.polymer.2006.05.069
  21. Shukla, A. K. and Kumar, T. P., "Materials for Next-generation Lithium Batteries," Curr. Sci., 94, 314(2008).
  22. Chang, C. K., Davis, G. T., Harding, C. A. and Takahashi, T., "Polymeric Electrolyte Based on Poly(Ethylene Imine) and Lithium Salts," Solid State Ionics, 18-19, 300(1986). https://doi.org/10.1016/0167-2738(86)90131-1
  23. Tanaka, R., Fujita, T., Nishibayashi, H. and Saito, S., "Ionic Conduction in Poly(ethylenimine)-and Poly(N-methylethylenimine)- lithium Salt Systems," Solid State Ionics, 60, 119(1993). https://doi.org/10.1016/0167-2738(93)90284-A
  24. Rey, I., Bruneel, J. L., Grondin, J., Servant, L. and Lassegues, J. C., "Raman Spectroelectrochemistry of a Lithium/Polymer Electrolyte Symmetric Cell," J. Electrochem. Soc. 145(9), 3034(1998). https://doi.org/10.1149/1.1838759
  25. Kim, S., Hwang, E. J., Lee, J. R., Kim, H. I. and Park, S. J., "Preparation and Electrochemical Properties of Polymeric Composite Electrolytes Containing Organic Clay Materials," Polym (Korea), 31(4), 297(2007).
  26. Park, M. K., Kim, H. S., An, J. H. and Kim, J., "New Oligomeric Ether Plasticizers for Solid Polymer Electrolytes:Synthesis and Electrical Properties of Oligomeric PEO Having Bis(fivemembered cyclic carbonate)s at Chain Ends," J. Ind. Eng. Chem., 11(2), 222(2005).
  27. Kim, S. and Park, S. J., "Interlayer Spacing Effect of Alkylammonium- modified Montmorillonite on Conducting and Mechanical Behaviors of Polymer Composite Electrolytes," J. Colloid Interface. Sci., 332, 145(2009). https://doi.org/10.1016/j.jcis.2008.12.006
  28. Kim, S. and Park, S. J., "Preparation and Electrochemical Behaviors of Polymeric Composite Electrolytes Containing Mesoporous Silicate Fillers," Electrochim. Acta, 52, 3477(2007). https://doi.org/10.1016/j.electacta.2006.10.024