DOI QR코드

DOI QR Code

Optimal Design of Cz Process for Increasing a Productivity of Single Crystal Si Solar Cell Ingot

태양전지용 단결정 실리콘 잉곳 생산성 증대를 위한 초크랄스키 공정 최적 설계

  • Lee, Eunkuk (School of Chemical Engineering, Yeungnam University) ;
  • Jung, Jae Hak (School of Chemical Engineering, Yeungnam University)
  • 이은국 (영남대학교 공과대학 화학공학부) ;
  • 정재학 (영남대학교 공과대학 화학공학부)
  • Published : 2011.08.01

Abstract

Recently, industry needs a new design of Czochralski(Cz) process for higher productivity with reasonable energy consumption. In this study, we carried out computational simulations for finding out a new optimal design of Cz process with variables which can be applied in real industry such as location of heater, shape of shield and crucible size. Objective process was Cz process which can be produced 8 inch diameter Si ingot for solar cell and we acquired an optimal design for higher productivity, low power consumption with stable production condition. For higher productivity we also change the crucible diameter from 22 inches to 24 inches with changing insulation thickness only because the process housing size could not be changed in industry.

최근 산업에서는 Czochralski(Cz) 공정에서 ingot의 생산성을 높이고 동시에 에너지 소비를 적절하게 할 수 있는 최적 설계가 요구되고 있다. 본 연구에서는 컴퓨터 시뮬레이션을 이용하여 현장에서 적용 가능한 설계 인자인 도가니(crucible) 크기, shield 모양, heater의 위치를 변동하면서 가장 최적의 생산성 및 전력 절감 설계를 찾아내는 연구를 수행하였다. 대상 공정은 직경 8 인치 태양전지용 ingot 생산 공정으로 생산성 증대를 위해 도가니 크기를 22인치에서 24인치로 바꾸어 안정적 생산이 가능한 최적설계를 찾았다. 이때 산업에서 외형변화가 허용되지 않아 단열두께만 줄여 최적설계를 찾았다.

Keywords

References

  1. Sinno, T., Dornberger, E., von Ammon, W., Brown, R. A. and Dupret, F., "Modeling and Simulation for Defect Engineering of Cz-growth Silicon Crystals," Mater. Sci. Eng. Reports, R28, 149-198(2000).
  2. Tomzig, E., von Ammon, W., Dornberger, E., Lamber, U. and Zulehner, W., "Challengers for Economical Growth of High Quality 300 mm Cz Si Crystral," Microelectron. Eng., 45(2), 113-125 (1999). https://doi.org/10.1016/S0167-9317(99)00109-4
  3. Egorov, Y. E., Makarov, Y. N., Rudinsky, E. A., Smirnov, E. M., Zhmakin, A. I., Dunham, and J. S. Nelson (Eds.), "Semiconductor Process and Device Performance Modeling," Material Research Society Symposium Proceedings, 490, 181(1998).
  4. Gevelber, M., Wilson, D. and Duanmu, N., "Modeling Requirements for Development of an Advanced Czochralski Control system," J. Cryst. Growth., 230, 217-213(2001). https://doi.org/10.1016/S0022-0248(01)01346-X
  5. Assaker, R., Van den Bogaert, N. and Dupret, F., "Time-dependent Simulation of the Growth of Large Silicon Crystals by the CzoChralski Technique Using A Turbulent Model For melt convection," J. Cryst. Growth., 180, 450-460(1997). https://doi.org/10.1016/S0022-0248(97)00240-6
  6. Kinney, T. A., Bornside, D. E., Brawn, R. A. and Kim, K. M., "Quantitative Assessment of an Integrated Hydrodynamic Thermal- capillary Model for Large Diameter Czochralski Growth of Silicon," J. Cryst. Growth., 126, 413-434(1993). https://doi.org/10.1016/0022-0248(93)90047-Z
  7. Van den Bogaert, N. and Dupret, F., "Dynamic Global simulation of the Czochralski Process : I. Principles of the Mothod," J. Cryst. Growth., 171, 65-76(1997). https://doi.org/10.1016/S0022-0248(96)00488-5
  8. Van den Bogaert, N. and Dupret, F., "Dynamic Global simulation of the Czochralski process : II. Analysis of the Growth of a Ge crystal," J. Cryst. Growth., 171, 77-93(1997). https://doi.org/10.1016/S0022-0248(96)00489-7

Cited by

  1. 생산성 증대를 위한 대구경 잉곳 연속 성장 초크랄스키 공정 최적 속도 연구 vol.54, pp.6, 2011, https://doi.org/10.9713/kcer.2016.54.6.775