DOI QR코드

DOI QR Code

Characteristics of $CO_{2}$ Absorption and Degradation of Aqueous Alkanolamine Solutions in $CO_{2}$ and $CO_{2}-O_{2}$ System

$CO_{2}$$CO_{2}-O_{2}$ 시스템에서 알카놀아민류 흡수제를 이용한 $CO_{2}$ 흡수 및 흡수제 열화 특성

  • Choi, Won-Joon (Fuel Cell System Development Team, Doosan Heavy Industries & Construction) ;
  • Lee, Jong-Seop (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Han, Keun-Hee (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Min, Byoung-Moo (Greenhouse Gas Research Center, Korea Institute of Energy Research)
  • 최원준 (두산중공업 연료전지시스템개발팀) ;
  • 이종섭 (한국에너지기술연구원 온실가스연구단) ;
  • 한근희 (한국에너지기술연구원 온실가스연구단) ;
  • 민병무 (한국에너지기술연구원 온실가스연구단)
  • Published : 2011.04.30

Abstract

Amine can undergo irreversible reactions by $O_{2}$ and high temperature in amine scrubbing process and these phenomena are called "degradation". Degradation causes not only a loss of valuable amine, but also operational problems such as foaming, corrosion and fouling. In this study, using various chemical absorbents(MEA; monoethanolamine, AMP; 2-amino-2-methyl-1-propanol, DAM; 1,8-diamino-p-menthane), we examined the following variable. I) loading ratio of $CO_{2}$ at $50^{\circ}C$ and $120^{\circ}C$, ii) concentration variation and initial degradation rate constant of absorbent in $CO_{2}$ and $CO_{2}/O_{2}$ system, and iii) effect of degradation by $O_{2}$. The $CO_{2}$ loading of 20 wt% DAM was 400% and 270% higher than that of 20 wt% MEA and AMP at 50, respectively and was the largest the difference of $CO_{2}$ loading between absorption $(50^{\circ}C)$ and regeneration $(120^{\circ}C)$ condition. The initial degradation rate constant of 20 wt% DAM was $2.254{\times}10^{-4}cycle^{-1}$ which was slower than that of MEA $(2.761{\times}10^{-4}cycle^{-1})$ and AMP $(2.461{\times}10^{-4}cycle^{-1})$ in $CO_{2}$ system. Also, it was increased 30% by $O_{2}$ that effects on the degradation by $O_{2}$ was less than 100% increased. these degradation reactions was able to identify by formation of new peak in GC and FT-IR spectrum analysis.

아민 흡수 공정에서 아민은 $O_{2}$ 및 고온에 의해 비가역반응을 일으키며, 이러한 현상을 열화반응이라 한다. 열화반응은 아민의 가치를 떨어뜨릴 뿐만 아니라 부식, fouling과 같은 문제를 일으킨다. 따라서, 본 연구에서는 여러가지 화학흡수제(MEA; monoethanolamine, AMP; 2-amino-2-methyl-propanol, DAM; 1,8-diamino-p-menthane)를 이용하여 i) 50, $120^{\circ}C$에서의 흡수평형, ii) $CO_{2}$$CO_{2}/O_{2}$ 계에서 흡수제의 열화에 따른 농도변화 및 초기열화속도상수, iii) 산소 $(O_{2})$에 의한 열화 영향을 살펴보았다. DAM은 흡수영역에서 MEA와 AMP에 비해 400~270% 높은 흡수평형부하를 보이며, MEA나 AMP에 비해 흡수/재생영역에서 흡수평형부하가 커 흡수능이 우수하였다. $CO_{2}$계에서 DAM의 초기열화속도상수는 $2.254{\times}10^{-4}$ $cycle^{-1}$로 MEA와 AMP의 $2.761{\times}10^{-4}$ $cycle^{-1}$, $2.416{\times}10^{-4}cycle^{-1}$에 비해 작아 열화가 늦게 진행되며, $O_{2}$ 주입시 초기열화속도상수는 1.3배 증가하여 2배 증가한 MEA보다 열화 영향이 적었다. 이러한, 일련의 열화반응은 GC chromatogram에서 새로운 peak의 생성과 FT-IR spectrum 분석을 통하여 확인할 수 있었다.

Keywords

References

  1. Min, B. M., "Status of $CO_{2}$ Capturing Technologies in Post Combustion," KIC News, 12, 15-29(2009).
  2. Morimoto, S., Taki, K. and Maruyama, T., "Current Review of $CO_{2}$ Separation and Recovery Technologies," Oct. 5, RITE(2002)
  3. Kim, J. H., Lee, J. H., Jang, K. R. and Shim, J. G., "Degradation Characteristics of Carbon Dioxide Absorbents with Different Chemical Structures," J. Kor. Soc. Environ. Eng., 31, 883-892(2009).
  4. Kennard, M. L. and Meisen, A., "Mechanisms and Kinetics of DEA Degradation," Ind. Eng. Chem. Fundam., 24, 129-140(1985). https://doi.org/10.1021/i100018a002
  5. Chakma, A. and Meisen, A., "Identification of Methyldiethanolamine Degradation Products by Gas Chromatography and Gas Chromatography-mass Spectrometry," J. Chromatogr., 457, 287-297(1988). https://doi.org/10.1016/S0021-9673(01)82076-8
  6. Choi, W. J., Lee, J. J., Cho, K. C. and Oh, K. J., "Degradation Characteristics of Aqueous AMP Solution Containing Additives in Separation of $CO_{2}/H_{2}S$," J. Kor. Soc. Environ. Eng., 27, 280-285(2005).
  7. Xu, S., Wang, Y. W., Otto, F. D. and Mather, A. E., "Representation Of Equilibrium Solubility Properties Of $Co_{2}$ With aqueous solutions of 2-amino-2-methyl-1-propanol," Chem. Eng. Process., 31, 7-12(1992). https://doi.org/10.1016/0255-2701(92)80002-K
  8. Caplow, M., "Kinetics of Carbamate Formation and Breakdown," J. Am. Chem. Soc., 90, 6795-6803(1968). https://doi.org/10.1021/ja01026a041
  9. Polderman, L. D. and Steele, A. B., "Why Diethanolamine Breakdown in Gas Treating Service," Oil Gas J., 54, 206-210(1956).
  10. Kennard, M. L., "Degradation of Diethanolamine Solutions," Ph. D. Thesis, Univ. of British Columbia(1983).
  11. Adeola, B. and Raphael, O. I., "Pathways for the Formation of Products of the Oxidative Degradation of $CO_{2}$-loaded Concentrated Aqueous Monoethanolamine Solutions During $CO_{2}$ Absorption from Flue Gases," Ind. Eng. Chem. Res., 44, 945-969(2005). https://doi.org/10.1021/ie049329+
  12. Rooney, P. C., Dupart, M. S. and Bacon, T. R., "Oxygen's Role in Alkanolamine Degradation," Hydrocarb. Process, Int. Ed., 109 (1998).
  13. Dennis, W. H., Hull, L. A. and Rosenblatt, D. H., "Oxidation of Amines. IV. Oxidative Degradation," J. Org. Chem., 32, 3783(1967). https://doi.org/10.1021/jo01287a012
  14. Chi, S. and Rochelle, G. T., "Oxidative Degradation of Monoethanolamine," Ind. Eng. Chem. Res., 41, 4178-4186(2002). https://doi.org/10.1021/ie010697c
  15. Cho, Y. M., Nam, S. C., Yoon, Y. I., Moon, S. J. and Baek, I. H., "Degradation of Aqueous Monoethanolamine Absorbent," Appl. Chem. Eng., 21, 195-199(2010).

Cited by

  1. Improvement in CO2 absorption and reduction of absorbent loss in aqueous NH3/triethanolamine/2-amino-2-methyl-1-propanol blends vol.30, pp.6, 2013, https://doi.org/10.1007/s11814-013-0072-1
  2. Solvent (KoSol-4) vol.51, pp.2, 2013, https://doi.org/10.9713/kcer.2013.51.2.267
  3. Capture Studies with New Absorbent (KoSol-5) vol.27, pp.4, 2016, https://doi.org/10.14478/ace.2016.1046
  4. Performance Analysis of Upgrading Process with Amine-Based CO2 Capture Pilot Plant vol.4, pp.1, 2011, https://doi.org/10.18770/kepco.2018.04.01.033