DOI QR코드

DOI QR Code

$H_{2}S$ Removal and $CO_{2}/CH_{4}$ Separation of Ternary Mixtures Using Polyimide Hollow Fiber Membrane

폴리이미드 중공사막을 이용한 혼합기체로부터 $H_{2}S$ 제거 및 $CO_{2}/CH_{4}$ 분리에 관한 연구

  • Published : 2011.04.30

Abstract

In this study, by using the polymeric membrane separation process, the $CO_{2}/CH_{4}$ separation and $H_{2}S$ removal from biogas were performed in order to $CH_{4}$ purification and enrichment for the fuel cell energy source application. Fibers were spun by dry/wet phase inversion method. The module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy(SEM) studies showed that the produced fibers typically had an asymmetric structure; a dense top layer supported by a porous, sponge substructure. The permeance of $CO_{2}$ and $CO_{2}/CH_{4}$ selectivity increased with pressure and temperature. Mixture gas with increasing pressure and temperature, removal efficiency of the $CO_{2}$ and $H_{2}S$ were decreased while concentration of $CH_{4}$ was increased up to 100%. When retentate flow rate was increased with the decreasing of pressure and temperature the $CH_{4}$ recovery ratio in retentate side was increased while the $CH_{4}$ purity in retentate side was decreased.

본 연구는 막 분리 공정을 이용한 것으로 수소의 에너지원을 이용가능한 메탄을 정제하기 위해 바이오가스 중 이산화탄소와 메탄의 분리 및 황화수소의 제거하고자 한다. 막은 건/습식 상전이 법을 이용하여 중공사공 형태로 제조하고 표면 실리콘 코팅 후 모듈을 제조하였다. 제조된 중공사 막의 구조특성을 확인하기 위해 전자주사 현미경 관찰을 통하여 치밀한 표면과 망상구조의 비대칭 구조를 확인하였다. 압력과 온도가 증가함에 따라 이산화탄소의 투과도는 증가하였고, 이산화탄소와 메탄의 선택도 역시 증가하는 것으로 나타났다. 혼합가스의 경우 압력 및 온도가 증가함에 따라 메탄 농도는 100%에 가까웠으며 이산화탄소와 황화수소의 제거효율도 증가하였다. Retentate 유량증가와 압력 온도감소에 따라 메탄 농도 감소 및 회수율이 증가하는 경향을 나타내었다.

Keywords

References

  1. Shin, S. B., Gaur, A., Song, H. J. and Park, J. W., "$CO_{2}$ Emission Reduction Potential of Gas Engibe and Fuel Cell in Electricity Generaton Using Anaerobic Digestion Gas," J. Korean Soc. Water Wastewater, 26(1), 1-10(2009).
  2. Harasimowicz, M., Orluk, P., Zakrzewska-Trznadel, G. and Chmielewski, A. G., "Application of Polyimide Membranes for Biogas Purification and Enrichment," J. Hazard. Mater., 144, 698-702(2007). https://doi.org/10.1016/j.jhazmat.2007.01.098
  3. Kim, N. J., Choi, J. M. and Ji, E. J., "Solvent Selection for the Detection of Siloxanes in Landfill Gas," J. Korean Soc. Env. Eng., 29(8), 915-921(2007).
  4. Ahn, J. S. and Lee, S. M., "A Study on the Separation Characteristics of $CH_{4}-CO_{2}$ Mixed Gas by Polyimide Hollow Fiber Membrane," HWAHAK KONGHAK, 34(6), 675-682(1996).
  5. Hao, J. and Rice, P. A., "Upgrading Low-quality Natural Gas with $H_{2}S-and\;CO_{2}$-Selective Polymer Membranes. Part II. Process Design, Economics, and Sensitivity Study of Membrane Stages with Recycle Streams," J. Membr. Sci., 320, 108-122(2008). https://doi.org/10.1016/j.memsci.2008.03.040
  6. Zhang, Y., Musselman, I. H., Ferraris, J. P. and Balkus, Jr. K. J., "Gas Permeability Properties of Matrimid Membranes Containing the Metal-organic Framework Cu-BPY-HFS," J. Membr. Sci, 313, 170-181(2008). https://doi.org/10.1016/j.memsci.2008.01.005
  7. Sridhar, S., Veerapur, R. S., Patil, M. B., Gudasi, K. B. and Aminabhavi, T. M., "Matrimid Polyimide Membranes for the Searation of Carbon Dioxide from Methane," J. Applied Polymer Science, 106(3), 1585-1594(2007). https://doi.org/10.1002/app.26306
  8. Zhao, H. Y., Cao, Y. M., Ding, X. L., Zhou, M. Q., Liu, J. H. and Yuan, Q., "Poly(ethylene oxide) Induced Cross-linking Modification of Matrimid Membranes for Selective Separation of $CO_{2}$," J. Membr. Sci., 320, 179-184(2008). https://doi.org/10.1016/j.memsci.2008.03.070
  9. Cecopieri-Gomez, M. L., Palacios-Alquisira, J. and Dominguez, J. M., "On the Limits Gas Separation in $CO_{2}/CH_{4},\;N_{2}/CH_{4},\;and\;CO_{2}/N_{2} $ Binary Mixture Using Polyimide Membranes," J. Membr. Sci., 293, 53-65(2007). https://doi.org/10.1016/j.memsci.2007.01.034
  10. Wallace, D. W., Ch, B. S. and Cm, B. S., "Crosslinked Hollow Fiber Membranes for Natural Gas Purification and Their Manufacture from Novel Polymers," The University of Texas at Austin(2004).
  11. Kim, D. H., An, Y. M., Jo, H. D., Park, J. S. and Lee, H. K., "Studies on the $N_{2}/SF_{6}$ Permeation Behavior Using the Polyethersulfone Hollow Fiber Membranes," J. Memb. Soc. Korea., 19(3), 244-251(2009).
  12. Park, H. H., Deshwal, B. R., Jo, H. D., Choi, W. K., Kim, I. W. and Lee, H. K., "Absorption of Nitrogen Dioxide by PVDF Hollow Fiber Membranes in a G-L Contactor," Desalination, 243, 52-64(2009). https://doi.org/10.1016/j.desal.2008.04.014
  13. Park, H. H., Deshwal, B. R., Kim, I. W. and Lee, H. K., "Absorption of $SO_{2}$ from Flue Gas Using PVDF Hollow Fiber Membranes in a Gas-iquid Contactor," J. Membr. Sci., 319, 29-37(2008). https://doi.org/10.1016/j.memsci.2008.03.023
  14. Park, B. R., Rhim, J. W., Lee, S. Y., Hwang, T. S. and Lee, H. K., "Membrane Surface Modification through Direct Fluorination for Gas-Liquid Contactor," J. Memb. Soc. Korea., 17(4), 345-351 (2007).
  15. Kim, J. H., Sohn, W. I., Choi, S. H. and Lee, S. B., "Preparation of Asymmetric Polyethersulfone Hollow Fiber Membranes for Flue Gas Separation," J. Memb. Soc. Korea., 15(2), 147-156(2005).
  16. Mohammadi, T., Moghadam, M. T., Saeidi, M. and Mahdyarfar, M., "Acid Gas Permeation Through Poly(Ester Urethane Urea) Membrane," Ind. Eng. Chem. Res, 47, 7361-7367(2008). https://doi.org/10.1021/ie071493k
  17. An, Y. M., Kim, D. H., Jo, H. D., Seo, Y. S., Park, Y. S., Lee, H. K., "The Permeation Behaviors of $H_{2}S/CH_{4}$ Using Polyimide Hollow Fiber Membrane," J. Memb. Soc. Korea, 19(4), 261-267 (2009).
  18. W. S. Winston Ho and Sirkar, K. K., Membrane Handbook, Van Nostrand Reinhold, New York(1992).
  19. Xiao, Y., Low, B. T., Hosseini, S. S., Chung, T. S. and Paul, D. R., "The Strategies of Molecular Architecture and Modification of Polyimide-based Membranes for $CO_{2}$ Removal from Natural gas-A Review," Peog. Polym. Sci., 34, 561-580(2009).
  20. Kim, D. H., Kim, G. L., Jo, H. D., Park, J. S., Lee, H. K., "Study on the Separation of $N_{2}/SF_{6}$ Mixture Gas Using Polyimide Hollow Fiber Membrane," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48(5), 660-667(2010).

Cited by

  1. (Biogas) Separation: A Review vol.32, pp.2, 2015, https://doi.org/10.1089/ees.2014.0413