DOI QR코드

DOI QR Code

CFD 해석을 이용한 Balloon형 인공심폐기 설계를 위한 구조적 해석

Structural Analysis for Constructing a Balloon Type Extracoporeal Membrane Oxygenator using CFD Analysis

  • 박영란 (전북대학교 대학원 화학공학과) ;
  • 심정연 (에이블멕스(주)) ;
  • 김기범 (전북대학교 수의과대학 약리학교실.인수공통전염병연구소) ;
  • 김상진 (전북대학교 수의과대학 약리학교실.인수공통전염병연구소) ;
  • 강형섭 (전북대학교 수의과대학 약리학교실.인수공통전염병연구소) ;
  • 김진상 (전북대학교 수의과대학 약리학교실.인수공통전염병연구소) ;
  • 김민호 (전북대학교 의학전문대학원 흉부외과학교실) ;
  • 홍철운 (전북대학교 공과대학 바이오메디칼공학부) ;
  • 김성종 (전북대학교 공과대학 화학공학부)
  • Park, Young-Ran (Department of Chemical Engineering, Graduate Schools, Chonbuk National University) ;
  • Shim, Jeong-Yeon (ableMAX, inc.) ;
  • Kim, Gi-Beum (Department of Pharmacology, College of Veterinary Medicine, Chonbuk National University) ;
  • Kim, Shang-Jin (Department of Pharmacology, College of Veterinary Medicine, Chonbuk National University) ;
  • Kang, Hyung-Sub (Department of Pharmacology, College of Veterinary Medicine, Chonbuk National University) ;
  • Kim, Jin-Shang (Department of Pharmacology, College of Veterinary Medicine, Chonbuk National University) ;
  • Kim, Min-Ho (Department of Thoracic and Cardiovascular Surgery, Chonbuk National University Medical Schools) ;
  • Hong, Chul-Un (Division of Biomedical Engineering, College of Engineering, Chonbuk National University) ;
  • Kim, Seong-Jong (Division of Chemical Engineering, College of Engineering, Chonbuk National University)
  • 발행 : 2011.04.30

초록

본 연구는 기존의 인공심폐기의 단점을 보완하기 위하여 혈액펌프를 사용하지 않고 혈류의 흐름을 유도할 수 있는 기구(balloon)형 인공심폐기 설계를 위한 구조적 해석을 시도하였다. 가상의 모형 인공심폐기 내에서의 혈류의 흐름패턴을 분석하기 위하여 CFD 모델링 방법을 사용하였다. 이 시스템의 작동원리는 막 산화기 주위를 기구를 사용하여 압력하중을 인가하여 주기적으로 수축.이완되도록 하였으며, 시간에 따라 변화하는 시간 함수 값은 sine 반주기와 sine 주기를 계산하여 적용하였다. 이와 같은 방법으로 기구형 인공심폐기를 설계할 경우 한 방향에 대한 혈류의 움직임을 유도할 수 있다는 가정 하에 구조적 해석을 하였다. 실험결과 CFD 시뮬레이션을 통하여 인공심폐기의 입구와 출구에 서의 혈류의 속도와 압력을 측정하여 분석한 결과 한 방향에 대한 혈류의 유동이 발생하는 것을 확인하였다. 이와 같은 CFD 시뮬레이션은 혈류의 흐름특성을 미리 예측할 수 있어 인공심폐기 설계에 있어서 최적화된 디자인을 제공할 수 있을 것이라 판단된다.

In this study, we attempted a structural analysis in order to design a balloon type extracorporeal membrane oxygenator that can induce blood flow without using blood pumps for the purpose of complementing the weakness in the existing extracorporeal membrane oxygenator. To analyze the flow characteristic of the blood flow within the virtual model of extracorporeal membrane oxygenator, computational fluid dynamics(CFD) modeling method was used. The operating principle of this system is to make the surface of the extracorporeal membrane oxygenator keep contracting and dilating regularly by applying pressure load using a balloon, and the 'ime Function Value'that changes according to the time was applied by calculating a half cycle of sine waveform and a cycle of sine.waveform Under the assumption that the uni-directional blood flow could be induced if the balloon type extracorporeal membrane oxygenator was designed as per the method described above, we conducted a structural analysis accordingly. We measured and analyzed the velocity and pressure of blood flow at both inlet and outlet of the extracorporeal membrane oxygenator through CFD simulation. As a result of the modeling, it was confirmed that there was a flow in accord with the direction of the blood by the contraction/dilation. With CFD simulation, the characteristics of blood flow can be predicted in advance, so it is judged that this will be able to provide the most optimized design in producing an extracorporeal membrane oxygenator.

키워드

참고문헌

  1. Hill, J. D., O'brien, T. G. and Murray, J. J., "Prolonged Extracorporeal Oxygenation for Acute Post-traumatic Respiratory Failure( shock-lung syndrome)," N. Eng J., 286, 629-634(1972). https://doi.org/10.1056/NEJM197203232861204
  2. Bartlett, R. H., "Extracorporeal Life Support for Cardiopulmonary Failure," Curr. Probl. Surg. 27, 623-705(1990). https://doi.org/10.1016/0011-3840(90)90014-V
  3. Hattler, B. G., Jhonson, P. C., Sawzik, P. J., Saffer, F. D., Klanin, M., Lund, L. W., Reeder, G. D., Walters, F. R., Goode, J. S. and Borovetz, H. S., "Respiratory Dialysis: A New Concept in Pulmonary Support," ASAIO J., 38, 322-325(1992). https://doi.org/10.1097/00002480-199207000-00046
  4. Kim, G. B., Hong, C. U. and Kwon, T. K., "Design of the Intravenous Oxygenator," J. Artifi. Orgnas, 9, 34-41(2006). https://doi.org/10.1007/s10047-005-0312-1
  5. Kim, G. B., Hong, C. U. and Kwon, T. K., "Vibration Characterictics of PZT Actuator by Fluid Flow in Intravascular Oxygenator," Jpn. J. Appl. Phys, 45(4B), 3811-3817(2006). https://doi.org/10.1143/JJAP.45.3811
  6. Kim, G. B., Kwon, T. K., Hong, C. U., Kim, S. J. and Kim, M. H., "Study on the Design of the Intravenous Oxygenator," ASAIO J, 52(2), 64A(2006).
  7. Hong, C. U., Kim, J. M., Kim, M. H., Kim, S. J., Kang, H. S., Kim, J. S. and Kim, G. B., "Gas Transfer and Hemolysis in Intravascular Lung Assist Device Using PZT Actuator," IJPEM, 10(1), 57-74(2009).
  8. Kim, G. B., Hong, C. U., Kim, S. J., Kim, J. S., Kim, M. H. and Kang, H. S., "Development of a Hollow Fiber Membrane Module for Use in An Implantable Artificial Lung," J. Mem. Sci, 326, 1300-136(2009).
  9. Kim, G. B., Kwon, T. K., Lee, S. C., Kim, S. J., Cheong, I. S., Oh, I. H., Kim, K. J., Byun, Y. S. and Jheong, G. R., "Characteristics of Oxygen Transfer in Intravascular Lung Assist Device by Vibrating," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 42(2), 151-162(2004).
  10. Kim, G. B., Kim, S. J., Hong, C. U., Kwon, T. K. and Kim, N. G., "Enhancement of Oxygen Transfer in Hollow Fiber Membrane by the Vibration Method," Korean J. Chem. Eng., 22(4), 521-527 (2005). https://doi.org/10.1007/BF02706636
  11. Hatter, B. G., Reeder, G. D., Sawzik, P. J., Lund, L. W., Walters, F. R., Shah, A. S., Rawleigh, J., Goode, J. S., Klain, M. and Borobetz, H., "Development of An Intravenous Membrane Oxygenator: Enhanced Intravenous Gas Exchange Through Convective Mixing of Blood Around Hollow Fiber Membranes," Artif. Organs, 18(11), 806-812(1994). https://doi.org/10.1111/j.1525-1594.1994.tb03327.x
  12. Vaslef, S. N., Cook, K. E., Leonard, R. J., Mockros, L. F. and Anderson, R. W., "Design and Evaluation of a New, Low Pressure Loss, Implantable Artificial Lung," ASAIO J., 40, 522(1994). https://doi.org/10.1097/00002480-199407000-00055
  13. Federspiel, W. J., Lund, L. W., Bultman, J. A., Wanant, S., Matoney, M., Litwak, P. and Hattler, B. G., "Ex-vivo Testing of the Intravenous Membrane Oxygenator(IMO)," ASAIO J., 46(3), 261-267(2000). https://doi.org/10.1097/00002480-200005000-00004
  14. Baskaran, H., "Blind-ended Hollow Fiber Prototypes of the Penn State Intravascular Lung," Ph. D. Dissertation, The Pennsylvania State University(1997).
  15. Zwischenberger, J. B., Anderson, C. M., Cook, K. E., Lick, S. D., Mockros, L. F. and Bartlett, R. H., "Development of An Implantable Artificial Lung: Challenges and Progress," ASAIO J., 47(4), 3,-320(2001). https://doi.org/10.1097/00002480-200107000-00003
  16. Dierickx P. W., De Somer F., De Wachter D. S., Van Nooten G., and Verdonck P. R., "Hydrodynamic Characteristic of Artificial Lung," ASAIO J., 46, 532-535(2000). https://doi.org/10.1097/00002480-200009000-00004
  17. Kim, G. B., Kwon, T. G. and Jheong, G. R., "Study on the Modeling Technique for Prediction About Pressure Drop of an Intravenous Lung Assist Device," J. Biomed. Eng. Res., 24(4), 293-299(2003).