DOI QR코드

DOI QR Code

Study of the Surface Acoustic Wave Biosensors for Detection of the Immunoglobulin G

자가면역글로불린 G 측정을 위한 표면탄성파 바이오센서에 대한 연구

  • Kim, Gi-Beum (Department of Pharmacology, Korea Zoonosis Research Institute, College of Veterinary Medicine, Chonbuk National University) ;
  • Cheong, Woo-Suk (Division of Biomedical Engineering, College of Engineering, Chonbuk National University) ;
  • Park, Young-Ran (Department of Chemical Engineering, Graduate Schools, Chonbuk National University) ;
  • Kim, Shang-Jin (Department of Pharmacology, Korea Zoonosis Research Institute, College of Veterinary Medicine, Chonbuk National University) ;
  • Kim, Seong-Jong (Division of Chemical Engineering, College of Engineering, Chonbuk National University) ;
  • Kang, Hyung-Sub (Department of Pharmacology, Korea Zoonosis Research Institute, College of Veterinary Medicine, Chonbuk National University) ;
  • Kim, Jin-Shang (Department of Pharmacology, Korea Zoonosis Research Institute, College of Veterinary Medicine, Chonbuk National University) ;
  • Hong, Chul-Un (Division of Biomedical Engineering, College of Engineering, Chonbuk National University)
  • 김기범 (전북대학교 수의과대학 약리학교실.인수공통전염병연구소) ;
  • 정우석 (전북대학교 공과대학 바이오메디칼공학부) ;
  • 박영란 (전북대학교 대학원 화학공학과) ;
  • 김상진 (전북대학교 수의과대학 약리학교실.인수공통전염병연구소) ;
  • 김성종 (전북대학교 공과대학 화학공학부) ;
  • 강형섭 (전북대학교 수의과대학 약리학교실.인수공통전염병연구소) ;
  • 김진상 (전북대학교 수의과대학 약리학교실.인수공통전염병연구소) ;
  • 홍철운 (전북대학교 공과대학 바이오메디칼공학부)
  • Published : 2011.04.30

Abstract

In this study, we have developed shear horizontal(SH) surface acoustic wave(SAW) sensors for the detection of immunoglobulin G(IgG) on the gold coated delay line of SH-SAW devices. As the result of the experiment, we could uniformly immobilize anti-MIgG(mouse IgG) conjugate on the surface of gold. When displaying results of immobilization on the surface of gold using G-anti MIgG conjugate and blocking buffer in frequency shift, G-anti MIgG conjugate showed frequency shift of 75.1 kHz in the initial frequency, and blocking buffer showed frequency shift of 215.7 kHz. When various concentrations of MIgG was added in 100MHz type sensor, the sensor showed 46.3, 127.45, 161.21 and 262.39 kHz frequency shift at 25, 50, 75 and 100 ${\mu}g$ MIgG concentration, respectively.

본 연구에서 탄성표면파(SH-SAW) 디바이스의 지연선에 코팅된 골드 위에서 면역 글로불린 G(IgG) 검출을 위한 SH-SAW 센서를 개발하고자 하였다. 실험결과, 금표면 위에 anti-MIgG 혼합물을 일관되게 고정시킬 수 있었다. G-anti MIgG 혼합물과 blocking buffer를 이용한 골드 표면 위에 고정화 하였을 때 주파수 변위를 측정한 결과, G-anti MIgG 는 초기 주파수에서 75.1 kHz 주파수 변위를 보였으며 blocking buffer는 215.7 kHz의 주파수 변위를 보였다. 100 MHz 센서에서 MIgG의 농도가 25, 50, 75, 100 ${\mu}g$일 때 46.3, 127.45, 161.21, 262.39 kHz 주파수 변위를 보였다.

Keywords

References

  1. Ballantine, D. S., White, R. M., Martin, S. J., Ricco, A. J., Zellers, E. T., Frye, G. C. and Wohltjen, H., "Acoustic Wave Sensors: Theory, Design, and Physico-chemical Application," Academic Press Inc., San Diego(1997).
  2. Gizelli, E., Goddard, N. J., Stevenson, A. C. and Lowe, C. R., "A Love Plate Biosensor Utilising a Polymer Layer," Sens. Actuators B, Chem., 6, 131-137(1992). https://doi.org/10.1016/0925-4005(92)80044-X
  3. Bender, F., Meimeth, F., Dahint, R., Grunze, M. and Josse, F., "Mechanisms of Interaction in Acoustic Plate Mode Immunosensors," Sens. Actuators B, Chem., 40, 105-110(1997). https://doi.org/10.1016/S0925-4005(97)80248-1
  4. Welsch, W., Klein, C., Von Schickfus, M. and Hunklinger, S., "Development of a Surface Acoustic Wave Immunosensor," Anal. Chem., 68, 2000-2004(1996). https://doi.org/10.1021/ac960198z
  5. Lee, Y., Kim, H., Roh, Y., Cho, H. and Baik, S., "Development of a SAW Gas Sensor for Monitoring SO2 Gas," Sens. Actuators, A64, 173-178(1998).
  6. Hur, Y., Han, J., Seon, J., Pak, Y. E. and Roh, Y., "Development of a SAW Sensor for the Detection of DNA Hybridization," Sens. Actuators, A120, 462-467(2005).
  7. Galipeau, D. W., Story, P. R., Vetelino, K. A. and Mileham, R. D., "Surface Acoustic Wave Microsensors and Applications," Smart Mater. Struct., 6, 658-667(1997). https://doi.org/10.1088/0964-1726/6/6/002
  8. Josse, F., Bender, F. and Cernosek, R. W., "Guided Shear Horizontal Surface Acoustic Wave Sensors for Chemical and Biochemical Detection in Liquids," Anal. Chem., 73, 5937-5944(2001). https://doi.org/10.1021/ac010859e
  9. Park, Y, "Biosensor and Lab-on-a-chip," J. Korean Inst. Electron. Eng., 31(1), 58-72 (2004).
  10. Kim, G. B., Chong, W. S., Kwon, T. K., Hohkawa, K., Hong, C. U. and Kim, N. G., "Basic Study to Develop Biosensors Using Surface Acoustic Wave," JJAP., 44(4B), 2868-2873(2005).
  11. Japan Society for the Promotion of Science, Acoustic wave device Technology, Ohmsha(2004).
  12. Thompson, M. and Stone, D. C., Surface-Launched Acoustic Wave Sensors, John Wiley & Sons, New York(1997).
  13. Chong, W. S., Hong, C. U. and Kim, G. B., "Surface Acoustic Wave Characteristics of Piezoelectric Materials and Protein Immobilization," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 44(2), 166-171(2006).
  14. Tizard, I. R. Veterinary Immunology: An Introduction, 7th ed., Elsevier, Philadelphia(2004).
  15. Robbins, S. L., Robbins' Pathologic basis of disease, Saunders, Philadelphia(1989).
  16. Das, J., Jo, K., Lee, J. W. and Yang, H., "Electrochemical immunosenosr using p-aminopheol redex cycling by hydrazine combined with low background current," Anal. Chem., 79, 2790-2796 (2007). https://doi.org/10.1021/ac062291l