DOI QR코드

DOI QR Code

Synthesis and Characterization of Phenylene-Thiophene-Thieno[3,4-b]pyrazine Oligomer

Phenylene-Thiophene-Thieno[3,4-b]pyrazine 올리고머의 합성과 특성

  • Hwang, Mi-Lim (Division of Chemical Engineering, Chonbuk National University) ;
  • Li, Ji-Cheng (Division of Chemical Engineering, Chonbuk National University) ;
  • Seo, Eun-Ok (Division of Chemical Engineering, Chonbuk National University) ;
  • Lee, Soo-Hyoung (Division of Chemical Engineering, Chonbuk National University) ;
  • Lee, Youn-Sik (Division of Chemical Engineering, Chonbuk National University)
  • Published : 2011.01.30

Abstract

During the development of low band-gap organic materials(p-type semiconducting organic compounds) for organic solar cells, an oligomer consisting of 2,5-dioctyloxyphenylene(OP), 3-hexylthiophene(HT), and 2,3-dimethylthieno[ 3,4-b]pyrazine(TP) as repeat units, oligo(OP-HT-TP), was synthesized. The oligomer was amorphous in nature in the temperature range studied, and well soluble in common organic solvents such as chloroform. The maximum absorption wavelength was 716 nm in solid state. The band-gap and HOMO/LUMO energy levels of oligo(OP-HT-TP) were measured to be 1.20 eV and -5.27/4.04 eV, respectively. However, the absorbance of the oligomer at maximum absorption wavelength was less than one fifth of that of poly(3-hexylthiophene) which has been most frequently used in fabrication of organic solar cells.

본 연구에서는 유기 태양전지용 작은 밴드 갭 물질(p-형 반도체)의 개발 과정에서, 2,5-dioctyloxyphenylene(OP), 3-hexylthiophene(HT) 및 2,3-dimethylthieno[3,4-b]pyrazine(TP)을 반복단위로 갖는 올리고머(oligo(OP-HT-TP))를 합성하였다. Oligo(OP-HT-TP)는 측정 온도 범위에서 무정형 상태로 존재하였으며, 범용 유기용매에 잘 용해되었다. 필름상태에서 최대 흡수 파장은 716 nm이었으며, 밴드 갭은 대략 1.20 eV로 측정되었다. Oligo(OP-HT-TP)의 HOMO와 LUMO의 에너지 준위는 각각 -5.27 eV와 -4.04 eV로 측정되었다. 그러나, 이 올리고머의 최대 흡수 파장에서 흡광도는 유기태양전지의 제작에 있어서 현재까지 가장 많이 사용되고 있는 poly(3-hexylthiophene) 흡광도의 1/5보다도 더 작은 것으로 측정되었다.

Keywords

References

  1. Dhanabalan, A., van Duren, J. K. J., van Hal, P. A., van Dongen, J. L. J. and Janssen, R. A. J., "Synthesis and Characterization of a Low Bandgap Conjugated Polymer for Bulk Heterojunction Photovoltaic Cells," Adv. Funct. Mater., 11(4), 255-262(2001). https://doi.org/10.1002/1616-3028(200108)11:4<255::AID-ADFM255>3.0.CO;2-I
  2. Schilinsky, P., Waldauf, C. and Brabec, C. J., "Recombination, Loss Analysis in Polythiophene Based Bulk Heterojunction Photodetectors," Appl. Phys. Lett., 87(20), 3885-3887(2002).
  3. Reyes-Reyes, M., Kim, K. K. and Carroll, D. L., "High-efficiency Photovoltaic Devices Based on Annealed Poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl(6,6)C61 Blends," Appl. Phys. Lett., 87(8), 83506(2005). https://doi.org/10.1063/1.2006986
  4. Ma, W., Yang, C., Gong, X., Lee, K. and Heeger, A. J., "Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology," Adv. Funct. Mater., 15(10), 1617-1622(2005). https://doi.org/10.1002/adfm.200305109
  5. Kim, J. Y., Kim, S. H., Lee, H. -H., Lee, K., Ma, W., Gong, X. and Heeger, A. J., "New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Opticl Spacer," Adv. Mater., 18(5), 572-576(2006). https://doi.org/10.1002/adma.200501825
  6. Koetse, M. M., Sweelssen, J., Hoekerd, K. T., Schoo, H. F. M., Veenstra, S. C., Kroon, J. M., Yang, X. and Loos, J., "Efficient Polymer: Polymer Bulk Heterojunction Solar Cells," Appl. Phys. Lett., 88(8), 083504(2006). https://doi.org/10.1063/1.2176863
  7. Xia, Y. J., Su, X. H., He, Z. C., Ren, X., Wu, H. B., Cao, Y. and Fan, D. W., "An Alternating Copolymer Derived from Indolo[3,2-b]carbazole and 4,7-Di(thieno[3,2-b]thien-2-yl)-2,1,3-benzothiadiazole for Photovoltaic Cells," Macromol. Rapid Commun., 31(14), 1287-1292(2010). https://doi.org/10.1002/marc.201000062
  8. Mikroyannidis, J. A., Kabanakis, A. N., Balraju, P., Sharma, G. D., "Enhanced Performance of Bulk Heterojunction Solar Cells Using Novel Alternating Phenylenevinylene Copolymers of Low Band Gap with Cyanovinylene 4-Nitrophenyls," Macromolecules, 43(13), 5544-5553(2010). https://doi.org/10.1021/ma100943t
  9. Liang, Y. Y., Xu, Z., Xia, J. B., Tsai, S. -T., Wu, Y., Li, G., Ray, C. and Yu, L., "For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%," Adv. Mater., 22(20), E135-E138(2010). https://doi.org/10.1002/adma.200903528
  10. Li, J.-C., Seo, E.-O., Lee, S.-H. and Lee, Y.-S., "Synthesis and Characterization of An Alternating Copolymer Consisting of N-(2-ethylhexyl)carbazole and 2,3-dimethylthieno[3,4-b]pyrazine units," Macromol. Res., 18(3), 304-307(2010). https://doi.org/10.1007/s13233-010-0304-8
  11. Li, J.-C., Hwang, M.-L., Lee, E.-W., Lee, S.-H., Yu, S.-C. and Lee, Y.-S., "Synthesis and Characterization of N-(2-ethylhexyl)carbazole-2,3-bis(4-fluorophenyl))thieno[3,4-b]pyrazine Copolymer," Bull. Korean Chem. Soc., 31(7), 2073-2076(2010). https://doi.org/10.5012/bkcs.2010.31.7.2073
  12. Karsten, B. P., Viani, L., Gierschner, J., Cornil, J. and Janssen, R. A. J., "An Oligomer Study on Small Band Gap Polymers," J. Phys. Chem. A., 112(43), 10764-10773(2008). https://doi.org/10.1021/jp805817c
  13. Winzenberg, K. N., Kemppinen, P., Fanchini, G., Bown, M., Collis, G. E., Forsyth, C. M., Hegedus, K., Singh, Th. B. and Watkins, S. E., "Dibenzo[b,def]chrysene Derivatives: Solution-Processable Small Molecules that Deliver High Power-Conversion Efficiencies in Bulk Heterojunction Solar Cells," Chem. Mater., 21(24), 5701-5703(2009). https://doi.org/10.1021/cm9028337
  14. Li, J.-C., Kim, S.-J., Lee, S. H., Zong, K. K. and Lee, Y.-S., "Synthesis and Characterization of a Thiophene-benzothiadiazole Copolymer," Macromol. Res., 17(5), 356-360(2009). https://doi.org/10.1007/BF03218875
  15. Aubert, P.-H., Knipper, M., Groenendaal, L., Lutsen, L., Manca, J., Vanderzande, D., "Copolymers of 3,4-Ethylenedioxythiophene and of Pyridine Alterated with Fluorene or Phenylene Units: Synthesis, Optical Properties, and Devices," Macromolecules, 37(11), 4087-4098(2004). https://doi.org/10.1021/ma030540r
  16. Li, J.-C., Seo, E.-O., Lee, S.-H. and Lee, Y.-S., "Synthesis and Characterization of an Alternating Copolymer Consisting of N-(2-ethylhexyl)carbazole and 2,3-dimethylthieno[3,4-b]pyrazine units," Macromol. Res., 18(3), 304-307(2010). https://doi.org/10.1007/s13233-010-0304-8
  17. Moses, D., Dogariu, A. and Heeger, A. J., "Ultrafast Detection of Charged Photocarriers in Conjugated Polymers," Physical Review B., 61(14), 9373-9379(2000). https://doi.org/10.1103/PhysRevB.61.9373
  18. Zhu, Y., Rabindranath, A. R., Beyerlein, T. and Tieke, B., "Highly Luminescent 1,4-Diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole-(DPP-) Based Conjugated Polymers Prepared Upon Suzuki Coupling," Macromolecules, 40(19), 6981-6989(2007). https://doi.org/10.1021/ma0710941
  19. Zoombelt, A. P., Fonrodona, M., Turbiez, M. G. R., Wienk, M. M. and Janssen, R. A. J., "Synthesis and Photovoltaic Performance of a Series of Small Band Gap Polymers," J. Mater. Chem., 19(30), 5336-5342(2009). https://doi.org/10.1039/b821979f
  20. Kim, J. Y., Lee, K. H., Coates, N. E., Moses, D. and Nguyen, T.-Q., Dante, M. and Heeger, A. J., "Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing," Science, 317(5835), 222-225(2007). https://doi.org/10.1126/science.1141711