DOI QR코드

DOI QR Code

저급탄의 열분해 및 촤-$CO_2$ 가스화 반응의 속도론적 연구

Kinetic Studies of Pyrolysis and Char-$CO_2$ Gasification on Low Rank Coals

  • 강석환 (고등기술연구원 플랜트엔지니어링센터) ;
  • 류재홍 (고등기술연구원 플랜트엔지니어링센터) ;
  • 박수남 (고등기술연구원 플랜트엔지니어링센터) ;
  • 변용수 (고등기술연구원 플랜트엔지니어링센터) ;
  • 서석정 (고등기술연구원 플랜트엔지니어링센터) ;
  • 윤용승 (고등기술연구원 플랜트엔지니어링센터) ;
  • 이진욱 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김용전 (SK에너지(주) 기술원) ;
  • 김주회 (SK에너지(주) 기술원) ;
  • 박삼룡 (SK에너지(주) 기술원)
  • Kang, Suk-Hwan (Plant Engineering Center, Institute for Advances Engineering(IAE)) ;
  • Ryu, Jae-Hong (Plant Engineering Center, Institute for Advances Engineering(IAE)) ;
  • Park, Soo-Nam (Plant Engineering Center, Institute for Advances Engineering(IAE)) ;
  • Byun, Yong-Soo (Plant Engineering Center, Institute for Advances Engineering(IAE)) ;
  • Seo, Seok-Jung (Plant Engineering Center, Institute for Advances Engineering(IAE)) ;
  • Yun, Yong-Seung (Plant Engineering Center, Institute for Advances Engineering(IAE)) ;
  • Lee, Jin-Wook (Plant Engineering Center, Institute for Advances Engineering(IAE)) ;
  • Kim, Yong-Jeon (SK energy Institute of Technology) ;
  • Kim, Joo-Hoe (SK energy Institute of Technology) ;
  • Park, Sam-Ryong (SK energy Institute of Technology)
  • 발행 : 2011.01.30

초록

인도네시아 아역청탄인 ABK탄과 중국 갈탄(lignite)과 같은 저급탄에 대한 열분해와 촤-$CO_2$ 가스화반응에 대한 실험을 비등온의 승온 조건에서 열중량분석기(Thermogravimetric analysis, TGA)를 이용하여 수행하였다. 열분해 속도는 2단계, 1차의 열분해 모델(Kissinger 법의 변형)에 의해 잘 모사되었다. 촤의 $CO_2$ 가스화반응은 수축 핵 모델에 적용하여 초기의 활성화 에너지가 ABK탄은 189.1 kJ/mol, lignite는 260.5 kJ/mol의 값을 얻었으며, 수축 핵 모델에 의해 잘 모사되었다. 특히, 촤의 $CO_2$ 가스화반응에서 활성화 에너지는 무연탄의 결과와 유사하였으며, 다른 모델이나 석탄의 종류에 따라 큰 차이를 보였다.

Thermogravimetric analysis(TGA) was carried out for pyrolysis and char-$CO_2$ gasification of low rank Indonesian ABK coal and China lignite. The pyrolysis rate was successfully described by a two-step model adopting the modified Kissinger method. The shrinking core model, when applied to char-$CO_2$ gasification gave initial activation energy of 189.1 kJ/mol and 260.5 kJ/mol for the ABK coal and China lignite, respectively. Thus, the char-$CO_2$ gasification has been successfully simulated by the shrinking core model. In particular, the activation energy of char-$CO_2$ gasification calculated in this work is similar to the results on the anthracite coal, but considerable difference exists when other models or coal types are used.

키워드

참고문헌

  1. IEA, World energy outlook, International Energy Agency, 2007.
  2. Garcia, G. O., Douglas, P., Croiset, E. and Zheng, L., "TechnoecoNomic Evaluation of IGCC Power Plants for $CO_2$ Avoidance," Energy Conv. Manag., 47, 2250(2006). https://doi.org/10.1016/j.enconman.2005.11.020
  3. Higman, C. and Burgt, M. V. D., Gasification, USA, Elsevier Science, 2003.
  4. Damen, K., Troost, M. V., Faaij, A. and Turkenberg, W., "A Comparison of Electricity and Hydrogen Production Systems with $CO_2$ Capture and Storage. Part A: Review and Selection of Promising Conversion and Capture Technologies," Progress Energy Combust. Sci., 32, 215(2006). https://doi.org/10.1016/j.pecs.2005.11.005
  5. Gnanapragasam, N., Reddy, B. and Rosen, M., "Reducing $CO_2$ Emissions for an IGCC Power Generation System: Effect of Variations in Gasifier and System Operating Conditions," Energy Conv. Manag., 50, 1915(2009). https://doi.org/10.1016/j.enconman.2009.04.017
  6. Ochoa, J., Cassanello, M. C., Bonelli, P. R. and Cukierman, A. L., "CO Gasification of Argentinean Coal Chars: A Kinetic Characterization," Fuel Process. Technol., 74, 161(2001). https://doi.org/10.1016/S0378-3820(01)00235-1
  7. Ye, D. P., Agnew, J. B. and Zhang, D. K., "Gasification of a South Australian Low-rank Coal with Carbon Dioxide and Steam: Kinetics and Reactivity Studies," Fuel, 77, 1209(1998). https://doi.org/10.1016/S0016-2361(98)00014-3
  8. Trommer, D. and Steinfeld, A., "Kinetic Modeling for the Combined Pyrolysis and Steam Gasification of Petroleum Coke and Experimental Determination of the Rate Constants by Dynamic Thermogravimetry in the 500-1520 K Range," Energy & Fuels, 20, 1250(2006). https://doi.org/10.1021/ef050290a
  9. Sun, Z. Q., Wu, J. H. and Zhang, D., "$CO_2$ and $H_2O$ Gasification Kinetics of a Coal Char in the Presence of Methane," Energy Fuels, 22, 2160 (2008). https://doi.org/10.1021/ef8000949
  10. Kim, S. J., Lee, C. G., Song, P. S., Yun, J. S., Kang, Y., Kim, J. S. and Choi, M. J., "Characteristics of Pyrolysis and Combustion Kinetics of Waste Polystyrene," J. Korean Ind. Eng. Chem., 14, 634(2003).
  11. Kissinger, H. E., "Reaction Kinetics in Differential Thermal Analysis," Anal. Chem., 29, 1702(1957). https://doi.org/10.1021/ac60131a045
  12. Mtihlen, H.-J., Sowa, F. and van Heek, K. H., "Comparison of the Gasification Behaviour of a West and East German Brown Coal," Fuel Process. Technol., 36, 185(1993). https://doi.org/10.1016/0378-3820(93)90026-Z
  13. Molina, A. and Mondragon, F., "Reactivity of Coal Gasification with Steam and $CO_2$," Fuel, 77, 1831(1998). https://doi.org/10.1016/S0016-2361(98)00123-9
  14. Zhang, L., Huang, J., Fang, Y. and Wang, Y., "Gasification Reactivity and Kinetics of Typical Chinese Anthracite Chars with Steam and $CO_2$," Energy Fuels, 20, (2006).
  15. Ahn, D. H., Gibbs, B. M., Ko, K. H. and Kim, J. J., "Gasification Kinetics of An Indonesian Sub-bituminous Coal-char with $CO_2$ at Elevated Pressure," Fuel, 80, 1651(2001). https://doi.org/10.1016/S0016-2361(01)00024-2

피인용 문헌

  1. Gasification by Non-isothermal Method on Fly Ash Char vol.51, pp.4, 2013, https://doi.org/10.9713/kcer.2013.51.4.493
  2. Effects of the incidence angels of solid particles on the erosion of castable refractories vol.25, pp.1, 2015, https://doi.org/10.6111/JKCGCT.2015.25.1.027
  3. H2O/N2/H2S 혼합가스 분위기 900℃에서 캐스타블 내화물의 부식 vol.27, pp.2, 2011, https://doi.org/10.6111/jkcgct.2017.27.2.099
  4. Gasification of Shenhua Bituminous Coal with CO2: Effect of Coal Particle Size on Kinetic Behavior and Ash Fusibility vol.13, pp.13, 2011, https://doi.org/10.3390/en13133313
  5. Development and Validation of Mass Reduction Prediction Model and Analysis of Fuel Properties for Agro-Byproduct Torrefaction vol.14, pp.19, 2011, https://doi.org/10.3390/en14196125