DOI QR코드

DOI QR Code

Cellular Responses to Alcohol in Escherichia coli, Clostridium acetobutylicum, and Saccharomyces cerevisiae

알코올에 대한 Escherichia coli, Clostridium acetobutylicum, Saccharomyces cerevisiae의 반응

  • Park, Ju-Yong (Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Hong, Chun-Sang (Frontier Science Organization, Kanazawa University) ;
  • Han, Ji-Hye (Department of Bioprocess Engineering, Chonbuk National University) ;
  • Kang, Hyun-Woo (Changhae Institute of Cassava and Ethanol Research, Changhae Changhae Ethanol Co., Ltd) ;
  • Chung, Bong-Woo (Department of Bioprocess Engineering, Chonbuk National University) ;
  • Choi, Gi-Wook (Changhae Institute of Cassava and Ethanol Research, Changhae Changhae Ethanol Co., Ltd) ;
  • Min, Ji-Ho (Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University)
  • 박주용 (전북대학교 반도체.화학공학부) ;
  • 홍천상 (가나자와 대학교 프론티어 사이언스 기구) ;
  • 한지혜 (전북대학교 생물공정공학과) ;
  • 강현우 ((주)창해에탄올 창해연구소) ;
  • 정봉우 (전북대학교 생물공정공학과) ;
  • 최기욱 ((주)창해에탄올 창해연구소) ;
  • 민지호 (전북대학교 반도체.화학공학부)
  • Published : 2011.01.30

Abstract

The increased concern for the security of the oil supply and the negative impact of fossil fuels on the environment, particularly greenhouse gas emissions, has put pressure on society to find renewable fuel alternatives. Compared to the traditional biofuel, ethanol, higher alcohols offer advantage as gasoline substitutes because of their higher energy density and lower hygroscopicity. For this reason, microbial fermentation is known as potential producers for sustainable energy carriers. In this study, bacterial responses including cellular and molecular toxicity were studied in three different microorganisms, such as Escherichia coli, Clostridium acetobutylicum, and Saccharomyces cerevisiae. In this study, it was analyzed specific stress responses caused by ethanol and buthanol using four different stress responsive genes, i.e. fabA, grpE, katG and recA. The expression levels of these genes were quantified by semi-quantitative reverse transcription-PCR. It was found that four genes have shown different responsive patterns when E. coli cultures were under stressful conditions caused by ethanol and buthanol, respectively. Therefore, in this study, the stress responsive effects caused by these alcohols and the extent of each stress response can be analyzed using the expression levels and patterns of different stress responsive genes.

유가의 급등과 화석 연료에 의한 온난화 현상은 재생 가능한 대체 연료에 대한 필요성이 요구되었다. 수송용 바이오 연료를 비교하였을 때 에탄올보다 높은 알코올 경우 휘발유와 비슷한 장점을 갖는데 그 이유는 높은 에너지 밀도와 낮은 흡습성을 갖기 때문이다. 이러한 이유로 미생물의 발효는 지속적인 에너지를 얻을 수 있는 잠재적 생산자라 할 수 있다. 본 연구에서는 생물학적으로 생산되는 알코올 성분에 대하여 두 종의 세균과 한종의 효모인 Escherichia coli와 Clostridium acetobutylicum 그리고 Saccharomyces cerevisiae를 이용하여 바이오 알코올에 대한 세포 성장 정도와 함께 미생물내에 스트레스 반응 유전자들의 분석을 실시하였다. 분석한 알코올은 에탄올과 부탄올이며, 이들의 농도별 세균의 성장속도와 산화적 손상에 민감하게 반응하는 katG 유전자, 생물막 손상에 민감하게 반응하는 fabA 유전자, 단백질 손상에 민감하게 반응하는 grpE 유전자, 유전자 손상에 민감하게 반응하는 recA 유전자의 반응여부를 분석하였다. 그 결과, 에탄올과 부탄올 중 부탄올의 세포 독성이 더 높게 관찰되었으며, 부탄올의 경우 생물막 손상을 유발하는 세포내 독성효과를 지니고 있음을 확인하였다.

Keywords

References

  1. Liu, S. and Qureshi, N., "How Microbes Tolerate Ethanol and Butanol," N. biotechnol., 26, 117-121(2009). https://doi.org/10.1016/j.nbt.2009.06.984
  2. You, K. M., Rosenfield, C. L. and Knipple, D. C., "Ethanol Tolerance in the Yeast Saccharomyces cerevisiae is Dependent on Cellular Oleic Acid Content," Appl. Environ Microbiol., 69, 1499-1503(2003). https://doi.org/10.1128/AEM.69.3.1499-1503.2003
  3. Atsumi, S., Cann, A. F., Connor, M. R., Shen, C. R., Smith, K. M., Brynildsen, M. P., Chou, K. J. Y., Hanai, T. and Liao, J. C., "Metabolic Engineering of Escherichia coli for 1-butanol Production," Metab. Eng., 10, 305-311(2008). https://doi.org/10.1016/j.ymben.2007.08.003
  4. Knoshaug, E. P. and Zhang, M., "Butanol Tolerance in a Selection of Microorganism," Appl. Biochem. Biotechnol., 153, 13-20 (2009). https://doi.org/10.1007/s12010-008-8460-4
  5. Zheng, Y. N., Li, L. Z., Xian, M., Ma, Y. J., Yang, J. M., Xu, X. and He, D. Z., "Problems with the Microbial Production of Butanol," J. Ind. Microbiol. Biotechnol., 36, 1127-1138(2009). https://doi.org/10.1007/s10295-009-0609-9
  6. Novotny, C., Flieger, M., Panos, J. and Dolezalova, L., "Effect of Growth Rate on Ethanol Tolerance of Saccharomyces cerevisiae," Folia Microbiol., 37, 43-46(1992). https://doi.org/10.1007/BF02814578
  7. Dien, B. S., Cotta, M. A. and Jeffries, T. W., "Bacteria Engineered for Fuel Ethanol Production: Current Status," Appl. Microbiol. Biotechnol., 63, 258-266(2003). https://doi.org/10.1007/s00253-003-1444-y
  8. Inui, M., Suda, M., Kimura, S., Yasuda, K., Suzuki, H., Toda, H., Yamamoto, S., Okino, S., Suzuki, N. and Yukawa, H., "Expression of Clostridium acetobutylicum Butanol Synthetic Genes in Escherichia coli," Appl. Microbiol. Biotechnol., 77, 1305-1316 (2008). https://doi.org/10.1007/s00253-007-1257-5
  9. Kim, Y. S., Min, J., Hong, H. N., Park, J. H., Park, K. S. and Gu, M. B., "Gene Expression Analysis and Classification of Mod of Toxicity of Polycyclic Aromatic Hydrocarbons(PAHs) in Escherichia coli," Chmosphere, 66, 1243-1248(2007). https://doi.org/10.1016/j.chemosphere.2006.07.040
  10. Lee, S. Y. and Min, J., "Regulation of NO from Endothelial Cells by the Decrease of Cellular cAMP Under Arsenite Exposure," J. Microbiol. Biotechnol., 18, 392-395(2008).
  11. Mishra, P. and Prasad, R., "Relationship Between Ethanol Tolerance and Fatty Acyl Composition of Saccharomyces cerevisiae," Appl. Microbiol. Biotechnol., 30, 294-298(1989).
  12. Petrov, V. V. and Okorokov, L. A., "Increase of the Anion and Proton Permeability of Saccharomyces carlsbergenesis Plasmalema by n-alcohols as a Possible Cause of its de-nergization," Yeast, 6, 311-318(1990). https://doi.org/10.1002/yea.320060404

Cited by

  1. 도시 물 순환 개선을 위한 생태저류지의 최적설계용량 결정 vol.55, pp.6, 2017, https://doi.org/10.9713/kcer.2017.55.6.745