DOI QR코드

DOI QR Code

EDLC 전극용 메조기공 활성탄소 섬유의 전기화학적 특성

The Electrochemical Characteristics of Mesopore Active Carbon Fiber for EDLC Electrode

  • Kang, Chae-Yoen (Department of Chemical Engineering, Research Institute of Industrial Sci. & Tech., Chungbuk National Univ.) ;
  • Shin, Yun-Sung (Department of Chemical Engineering, Research Institute of Industrial Sci. & Tech., Chungbuk National Univ.) ;
  • Lee, Jong-Dae (Department of Chemical Engineering, Research Institute of Industrial Sci. & Tech., Chungbuk National Univ.)
  • 발행 : 2011.01.30

초록

철 이온 교환방법에 의해 메조기공을 갖는 활성탄소 섬유(ACF)를 제조하고, 이를 사용하여 전기 이중층 커패시터(EDLC)의 전극소재 성능을 조사하였다. 질산처리에 의해 제조된 메조기공 ACF는 비표면적이 1,249, 664 $m^2/g$이고, 메조 기공 분율이 70.6-81.3%이고, 평균 기공크기는 약 2.78~4.14 nm이다. 질산처리시간이 짧을수록 비표면적이 크고 메조 기공이 적게 발달됨을 알 수 있었다. 전기이중층 커패시터의 성능을 조사하기 위해서, 메조기공 ACF, 도전제, 바인더를 사용하여 단위 셀을 제조하였으며, 유기 전해질을 사용하였다. 2시간 질산으로 처리된 ACF의 비 축전양은 0.47 $F/cm^2$이고, 20회 충.방전 테스트에서 안정된 실험결과를 얻을 수 있었다. EDLC의 전기화학적 성능은 ACF 전극의 비표면적에 크게 영향을 받으며 메조기공은 전하의 확산저항을 감소시키는 것을 알 수 있었다.

The electrode material performances of electric double layer capacitor(EDLC) were investigated using mesopous active carbon fiber(ACF), which was prepared by the iron exchange method. The mesoporous ACF had pore characteristics of specific surface area around 1249, 664 $m^2$/g, mesoporous fraction around 70.6-81.3% and meanpore size around 2.78-4.14 nm. The results showed that as HNO3 treatment time decreased, the specific surface area increased and mesoporous fraction decreased. To investigate electrochemical performance of EDLC, unit cell was manufactured using mesoporus ACF, conducting material and binder; organic elctrolyte was used on this experiment. The specific capacitance of ACF treated with HNO3 for 2 hours turned out to be 0.47 $F/cm^2$and the results of the cyclic charge-discharge tests were stable. Thus, the electrochemical performance of EDLC was mainly dependent on specific surface area of ACF electrode and the diffusion resistance of charge decreased as the mesopore increased.

키워드

참고문헌

  1. Osaka, T. and Datta, M., Energy storage systems for electronics, Gorden and Breach Science Publishers(2000).
  2. Prabaharan, S. R. S., Vimala, R. and Zainal, Z., "Nanostructured Mesoporous Carbon as Electrodes for Supercapacitors," J. Power sources, 161, 730-736(2006). https://doi.org/10.1016/j.jpowsour.2006.03.074
  3. Mitani, S., Lee, S. I., Saito, K., Korai, Y. and Mochida, I., "Contrast Structure and EDLC Performances of Activated Spherical Carbons with Medium and Large Surface Areas," Electrochimica Acta, 51, 5487-5493(2006). https://doi.org/10.1016/j.electacta.2006.02.040
  4. Fang, B., Wei, Y. Z. and Kumagai, M., "Modified Carbon Materials for High-rate EDLCs Application," J. Power Sources, 155, 487-491(2006). https://doi.org/10.1016/j.jpowsour.2005.04.012
  5. Gryglewicz, G., Machilkowski, J., Lorenc-Grabowska, E., Lota, G. and Frackowiak, E., "Effect of Pore Size Distribution of Coalbased Activated Carbons on Double Layer Capacitance," Electrochimica Acta, 50, 1197-1206(2005). https://doi.org/10.1016/j.electacta.2004.07.045
  6. Barbieri, O., Hahn, M., Herzog, A. and Kotz, R., "Capacitance Limits of High Surface Area Activated Carbons for Double Layer Capacitors," Carbon, 43, 1303-1310(2005). https://doi.org/10.1016/j.carbon.2005.01.001
  7. Alonso, A., Ruiz, V., Blanco, C., Santamaria, R., Granda, M., Menendez, R. and de Jager, S. G. E., "Activated Carbon Produced from Sasol-Lurgi Gasifier Pitch and Its Application as Electrodes in Supercapacitors," Carbon, 44, 441-446(2006). https://doi.org/10.1016/j.carbon.2005.09.008
  8. Ozaki, J., Endo, N., Ohizumi, W., Igarashi, K., Nakahara, M. and Oya, A., "Novel Preparation Method for the Production of Mesoporous Carbon Fiber from a Polymer Blend," Carbon, 35(7), 1031-1033(1997). https://doi.org/10.1016/S0008-6223(97)89878-8
  9. Kang, C. Y., Kang, M. G. and Lee, J. D., "Preparation of Mesoporous Carbon Using Ion Exchange," J. korean oil chem. Soc., 26, 328-334(2009).
  10. Sutherland, I., Sheng, E., Bradley, R. H. and Freakley, P. K., "Effects of Ozone Oxidation on Carbon Black Surfaces," J. Mater. Sci., 31(21), 5651-5655(1996). https://doi.org/10.1007/BF01160810
  11. Sing, K. S. W., "Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity," Pure and Appl. Chem., 54(11) 2201-2218(1982). https://doi.org/10.1351/pac198254112201
  12. Tamon, H., Ishizaka, H., Araki, T. and Okazaki, M., "Control of Mesoporous Structure of Organic and Carbon Aerogels," Carbon, 36, 1257-1262(1998). https://doi.org/10.1016/S0008-6223(97)00202-9
  13. Li, L., Song, H. and Chen, X., "Ordered Mesoporous Carbons from the Carbonization of Sulfuric-acid-treated Silica/triblock Copolymer/sucrose Composites," Microporous Mesoporous Mater., 94, 9-14(2006). https://doi.org/10.1016/j.micromeso.2006.03.021
  14. Li, L., Song, H. and Chen, X., "Pore Characteristics and Electrochemical Performance of Ordered Mesoporous Carbons for Electric Double-layer Capacitors," Electrochemica Acta, 51, 5715-5720(2006). https://doi.org/10.1016/j.electacta.2006.03.005
  15. Tomita, A., Yuhki, Y., Higashiyama, K., Takarada, T. and Tamai, Y., Nenryo Kyokaishi(J. Fuel Soc. Jpn.), 64, 402-408(1985). https://doi.org/10.3775/jie.64.402
  16. Li, H., Xi, H., Zhu, S., Wen, Z. and Wang, R., "Preparation, Structural Characterization, and Electrochemical Properties of Chemically Modified Mesoporous Carbon," Microporous Mesoporous Mater., 96, 357-362(2006). https://doi.org/10.1016/j.micromeso.2006.07.021
  17. Karadikar, P., Patil, K. R., Mitra, A., Kakade, B. and Chandwadkar, A. J., "Synthesis and Characterization of Mesoporous Carbon Through Inexpensive Mesoporous Silica as Template," Microporous Mesoporous Mater., 98, 189-199(2007). https://doi.org/10.1016/j.micromeso.2006.09.003

피인용 문헌

  1. The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH vol.51, pp.3, 2013, https://doi.org/10.9713/kcer.2013.51.3.308
  2. A Development of High Power Activated Carbon Using the KOH Activation of Soft Carbon Series Cokes vol.15, pp.2, 2014, https://doi.org/10.4313/TEEM.2014.15.2.81
  3. 다양한 활성탄 종류에 따른 EDLC 전기화학적 특성 vol.28, pp.2, 2011, https://doi.org/10.12925/jkocs.2011.28.2.13
  4. 금속산화물 전극을 사용한 고 에너지밀도 하이브리드 커패시터 특성 vol.28, pp.3, 2011, https://doi.org/10.12925/jkocs.2011.28.3.10
  5. 이차전지 음극용 화학적 활성화법으로 제조된 활성탄의 전기화학적 특성 vol.32, pp.3, 2015, https://doi.org/10.12925/jkocs.2015.32.3.480