DOI QR코드

DOI QR Code

비정렬 삼각 격자를 이용한 2 차원 비직교 형상에서의 역복사 해석

Inverse Radiation Analysis of a Two-Dimensional Irregular Geometry Using Unstructured Triangular Meshes

  • 투고 : 2010.05.25
  • 심사 : 2011.03.28
  • 발행 : 2011.06.01

초록

2 차원 비직교 형상에 대해 비정렬 삼각 격자를 이용하여 복사 열전달의 역해석을 수행하였다. 본 논문에서는 확산적으로 방사 및 반사를 하는 벽면으로 이루어진 형상 내부에 흡수 및 방사, 산란하는 매질이 채워져 있는 문제를 고려하였다. 유한체적법을 사용하여 복사전달 방정식을 계산하였고 이 때 얻은 입사복사량을 역해석의 측정 데이터로 사용하였다. 벽면의 방사율을 추정하기 위해 켤레구배법을 적용하였으며, 목적 함수를 최소화하는 과정을 통해 해를 구하였다. 측정값의 측정 오차가 추정 정확도에 미치는 영향을 살펴보았고, 비정렬 격자계의 성능을 확인하기 위해 정렬 격자계를 이용하여 얻은 결과와 비교해 보았다.

The inverse radiation analysis of a two-dimensional irregular configuration using unstructured triangular meshes is presented. In this study, an enclosure filled with an absorbing, emitting and scattering medium with diffusely emitting and reflecting opaque boundaries is considered. The finite volume method is applied to solve the radiative transfer equation in order to simulate the measured incident radiation values which are used as input data for the inverse analysis. The conjugate gradient method is adopted for the estimation of wall emissivities by minimizing the objective function at each iteration step. To verify the performance of the unstructured grid system, we compare the results with those using a structured grid system for the two-dimensional lopsided shape. The effect of measurement errors on the estimation accuracy is also investigated.

키워드

참고문헌

  1. Ozisik, M. N. and Orlande, H. R. B., 2000, Inverse Heat Transfer: Fundamentals and Applications, Taylor and Francis, New York.
  2. Verma, S. and Balaji, C., 2007, "Multi-Parameter Estimation in Combined Conduction-Radiation from a Plane Parallel Participating Medium Using Genetic Algorithms," Int. J. Heat Mass Transfer, Vol. 50, No. 9-10, pp. 1706-1714. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.045
  3. Ou, N. R. and Wu, C. Y., 2002, "Simultaneous Estimation of Extinction Coefficient Distribution, Scattering Albedo and Phase Function of a Two-Dimensional Medium," Int. J. Heat Mass Transfer, Vol. 45, No. 23, pp. 4663-4674. https://doi.org/10.1016/S0017-9310(02)00168-0
  4. Park, H. M. and Yoon, T. Y., 2000, "Solution of the Inverse Radiation Problem Using a Conjugate Gradient Method," Int. J. Heat Mass Transfer, Vol. 43, No. 10, pp. 1767-1776. https://doi.org/10.1016/S0017-9310(99)00255-0
  5. Kim, K. W., Baek, S. W., Kim, M. Y. and Ryou, H. S., 2004, "Estimation of Emissivities in a Two-Dimensional Irregular Geometry by Inverse Radiation Analysis Using Hybrid Genetic Algorithm," J. Quant. Spectrosc. Radiat. Transfer, Vol. 87, No. 1, pp. 1-14. https://doi.org/10.1016/j.jqsrt.2003.08.012
  6. Pourshaghaghy, A. Pooladvand, K., Kowsary, F. and Karimi-Zand, K., 2006, "An Inverse Radiation Boundary Design Problem for an Enclosure Filled with an Emitting, Absorbing, and Scattering Media," Int. Commun. Heat Mass Transf., Vol. 33, No. 3, pp. 381-390. https://doi.org/10.1016/j.icheatmasstransfer.2005.12.007
  7. Kim, J. T., Kim, Y. M. and Maeng, J. S., 1995, "Finite Volume Method for Incompressible Flows with Unstructured Triangular Grids," KSME, Vol. 19, No. 11, pp. 3031-3040.
  8. Chai, J. C., 1994, A Finite-Volume Method for Radiation Heat Transfer, Ph. D. Thesis, University of Minnesota, Minneapolis, MN.
  9. Kim, T. K. and Lee, H. O., 1988, "Effect of Anisotropic Scattering on Radiative Heat Transfer in Two-Dimensional Rectangular Enclosures," Int. J. Heat Mass Transfer, Vol. 31, No. 8, pp. 1711-1721. https://doi.org/10.1016/0017-9310(88)90283-9
  10. Parthasarathy, G., Lee, H. S., Chai, J. C. and Patankar, S. V., 1995, "Monte Carlo Solutions for Radiative Heat Transfer in Irregular Two-Dimensional Geometries," J. Heat Transfer, Vol. 117, No. 3, pp. 792-794. https://doi.org/10.1115/1.2822653
  11. Kim, M. Y., Baek, S. W. and Park, J. H., 2001, "Unstructured Finite-Volume Method for Radiative Heat Transfer in a Complex Two-Dimensional Geometry with Obstacles," Numerical Heat Transfer, Part B, Vol. 39, No. 6, pp. 617-635. https://doi.org/10.1080/10407790152034854