DOI QR코드

DOI QR Code

Effect of Groove Shape on Residual Stress Distribution in Narrow Gap Welds

용접부 형상이 협개선 용접부 잔류응력 분포에 미치는 영향

  • Soh, Na-Hyun (School of Mechanical Design and Automation Engineering, Seoul National Univ. of Science and Technology) ;
  • Yang, Jun-Seok (KEPCO Research Institute) ;
  • Pyo, Chang-Ryul (Dept. of Mechanical and Automotive Engineering, Induk Univ.) ;
  • Huh, Nam-Su (School of Mechanical Design and Automation Engineering, Seoul National Univ. of Science and Technology)
  • 소나현 (서울과학기술대학교 기계설계자동화공학부) ;
  • 양준석 (KEPCO 전력연구원) ;
  • 표창률 (인덕대학 기계자동차과) ;
  • 허남수 (서울과학기술대학교 기계설계자동화공학부)
  • Received : 2010.12.10
  • Accepted : 2011.03.14
  • Published : 2011.06.01

Abstract

It is well known that conventional welding techniques can result in welding defects due to the large groove angle of the weld. In this context, the narrow gap welding (NGW) technique is applied in the nuclear industry because of its inherent merits such as the reduction in welding time and the shrinkage of the weld, and the small deformation of the weld resulting from the small groove angle and welding bead width. In this paper, the distribution of welding residual stress and deformation behavior of the ER308L weld due to NGW are predicted through nonlinear two-dimensional finite element analysis, in which the actual NGW process is simulated in detail. In particular, the effects of the shape of weld, i.e., the width of the weld and the shape of the welding groove, on the residual stress are investigated. The present results can be used to assess the integrity of defective nuclear components and to improve the welding process.

일반적인 용접법은 용접 그루브(groove) 각도가 크기 때문에 용접 결함 발생의 원인이 된다. 따라서 원자력 발전소 배관 용접 시, 용접 그루브 각도가 작고 용접부 비드 폭이 좁은 협개선 용접법을 다수 수행하고 있다. 이러한 협개선 용접법은 용접시간 단축, 용접부 변형과 잔류응력의 감소, 용접 결함의 감소 등과 같은 장점을 갖고 있다. 본 논문에서는 협개선 용접부의 실제 용접 공정을 모사함으로써, ER308L 용접재의 변형 거동과 용접잔류응력을 비선형 2차원 유한요소해석을 통하여 예측하였다. 특히 용접방법 및 순서가 다른 두 형상에 대한 결과를 비교하고, 용접부 폭 넓이 변화에 따른 잔류응력 분포를 분석하였다. 본 논문의 결과는 향후 협개선 용접부의 용접 개선과 용접부 결함의 건전성 평가 등을 위해 적용될 수 있다.

Keywords

References

  1. Brust, F. W. and Scott, P. M., 2007, "Weld Residual Stresses and Primary Water Stress Corrosion Cracking in Bimetal Nuclear Pipe Welds," Trans. of ASME PVP Conference, PVP2007-26297.
  2. "ABAQUS/Standard User's Manual," ABAQUS Version 6.9-1, Simulia Corp.,
  3. Brickstad, B. and Josefson, B. L., 1998, "A Parametric Study of Residual Stresses in Multi-Pass Butt-Welded Stainless Steel Pipes," International Journal of Pressure Vessels and Piping, Vol. 75, pp. 11-25. https://doi.org/10.1016/S0308-0161(97)00117-8
  4. Song, T. K., Bae, H. Y., Kim, Y. J., Lee, K. S., Park, C. Y., Yang, J. S., Huh, N. S., Kim, J. W., Park, J. S., Song, M. S., Lee, S. G., Kim, J. S., Yu, S. C. and Chang, Y. S.,, 2009, "Assessment of Round Robin Analyses Results on Welding Residual Stress Prediction in a Nuclear Power Plant Nozzle," Trans. of the KSME A, Vol. 33, No. 1 pp. 72-81. https://doi.org/10.3795/KSME-A.2009.33.1.72
  5. ASME, 2004, "Welding and Brazing Qualification," ASME Boiler and Pressure Vessel Code, Sec. IX
  6. "Materials Reliability Program: Advanced FEA Evaluation of Growth of Postulated Circumferential PWSCC Flaws in Pressurizer Nozzle Dissimilar Metal Welds (MRP-216, Rev. 1): Evaluations Specific to Nine Subject Plants," EPRI, Palo Alto, CA, U.S.A., 2007.

Cited by

  1. A study on heat flow and thermal distortion in terms of air-carbon-arc gouging of steel plates vol.232, pp.12, 2018, https://doi.org/10.1177/0954405416685385