DOI QR코드

DOI QR Code

Effect of Glucose Levels and N Sources in Defined Media on Fibrolytic Activity Profiles of Neocallimastix sp. YQ1 Grown on Chinese Wildrye Grass Hay or Alfalfa Hay

  • Yang, H.J. (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Yue, Q. (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
  • Received : 2010.09.24
  • Accepted : 2010.11.11
  • Published : 2011.03.01

Abstract

Ferulic acid esterase (FAE) and acetyl esterase (AE) cleave feruloyl groups substituted at the 5'-OH group of arabinosyl residues and acetyl groups substituted at O-2/O-3 of the xylan backbone, respectively, of arabinoxylans in the cell wall of grasses. In this study, the enzyme profiles of FAE, AE and polysaccharide hydrolases of the anaerobic rumen fungus Neocallimastix sp. YQ1 grown on Chinese wildrye grass hay (CW) or alfalfa hay (AH) were investigated by two $2{\times}4$ factorial experiments, each in 10-day pure cultures. The treatments consisted of two glucose levels ($G^+$: glucose at 1.0 g/L, $G^-$: no glucose) and four N sources (N1: 1.0 g/L yeast extract, 1.0 g/L tryptone and 0.5 g/L $(NH_4)_2SO_4$; N2: 2.8 g/L yeast extract and 0.5 g/L $(NH_4)_2SO_4$; N3: 1.6 g/L tryptone and 0.5 g/L $(NH_4)_2SO_4$; N4: 1.4 g/L tryptone and 1.7 g/L yeast extract) in defined media. The optimal combinations of glucose level and N source for the fungus on CW, instead of AH, were $G^-N4$ and $G^-N3$ for maximum production of FAE and AE, respectively. Xylanase activity peaked on day 4 and day 6 for the fungus grown on CW and AH, respectively. The activities of esterases were positively correlated with those of xylanase and carboxymethyl cellulase. The fungus grown on CW exhibited a greater volatile fatty acid production than on AH with a greater release of ferulic acid from plant cell wall.

Keywords

References

  1. Akin, D. E. 1986. Chemical and biological structure in plants as related to microbial degradation of forage cell walls. In: Control of Digestion and Metabolism in Ruminants (Ed. L. P. Milligan, W. L. Grovum and A. Dobson). Englewood Cliffs NJ: Prentice-Hall, pp 139-157.
  2. Akin, D. E. 2008. Plant cell wall aromatics: Influence on degradation of biomass. Biofuels Bioprod. Biorefin. 2:288-303. https://doi.org/10.1002/bbb.76
  3. AOAC. 2005. Official methods of analysis, 18th edn. Association of Analytical Chemists, Washington, DC, USA.
  4. Atanasova-Pancevska, N. and D. Kungulovski. 2008. Comparison of morphological and enzyme characteristics of anaerobic fungi isolated from Cervus dama. Cent. Eur. J. Biol. 3:69-74. https://doi.org/10.2478/s11535-007-0046-6
  5. Baqueiro-pena, I., G. Rodriguez-Serrano, E. Gonzalez-Zamora, C. Augur, O. Loera and G. Saucedo-Castaneda. 2010. Biotransformation of ferulic acid to 4-vinylguaiacol by a wild and a diploid strain of Aspergillus niger. Bioresour. Technol. 101:4721-4724. https://doi.org/10.1016/j.biortech.2010.01.086
  6. Barichievich, E. M. and R. E. Calza. 1990. Supernatant protein and cellulase activities of the anaerobic ruminal fungus Neocallimastix frontalis EB188. Appl. Environ. Microbiol. 56:43-48.
  7. Bauchop, T. 1979. Rumen anaerobic fungi of cattle and sheep. Appl. Environ. Microbiol. 38:148-158.
  8. Beauchemin, K. A., D. Colombatto and D. P. Morgavi. 2004. A rationale for the development of feed enzyme products for ruminants. Can J. Anim. Sci. 84:23-36. https://doi.org/10.4141/A02-103
  9. Bergman, E. N. 1973. Glucose metabolism in ruminants as related to hypoglycemia and ketosis. Am. J. Phys. 215:865-873.
  10. Bergman, E. N. 1990. Energy distributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70:567-590.
  11. Bergman, E. N., R. S. Reid, M. G. Murray, J. M. Brockway and F. G. Whitelow. 1965. Interconversions and production of volatile fatty acids in the sheep rumen. Biochem. J. 97:53-58.
  12. Borneman, W. S., L. G. Ljungdahl, R. D. Hartley and D. E. Akin. 1991. Isolation and characterization of p-coumaroyl esterase from the anaerobic fungus Neocallimastix Strain-Mc-2. Appl. Environ. Microbiol. 57:2337-2344.
  13. Borneman, W. S., R. D. Hartley, W. H. Morrison and D. E. Akin. 1990. Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl. Microbiol. Biotech. 33:345-351. https://doi.org/10.1007/BF00164534
  14. Brookman, J. L., G. Mennim, A. P. J. Trinci, M. K. Theodorou and D. S. Tuckwell. 2000. Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 18S rRNA. Microbiology 146:393-403.
  15. Chen, Y. C., R. S. Hseu and K. J. Cheng. 2003. The genetic similarity of different generations of Neocallimastix frontalis SK. FEMS Microbiol. Lett. 221:227-231. https://doi.org/10.1016/S0378-1097(03)00207-6
  16. Chungool, W., W. Thongkam, P. Raweesri, A. Thamchaipenet and P. Pinphanichakarn. 2008. Production, purification, and characterization of acetyl esterase from Streptomyces sp. PC22 and its action in cooperation with xylanolytic enzymes on xylan degradation. World J. Microbiol. Biotechnol. 24:549-556. https://doi.org/10.1007/s11274-007-9509-1
  17. Forsberg, C. W., B. Crosby and Y. D. Thomas. 1986. Potential for manipulation of the rumen fermentation through the use of recombinant DNA techniques. J. Anim. Sci. 63:310-325.
  18. Gerbi, C., J. Bata, A. Breton and G. Prensier. 1996. Polysaccharide hydrolase production by the rumen fungus Caecomyces communis. Res. Microbiol. 147:363-370. https://doi.org/10.1016/0923-2508(96)84711-5
  19. Ho, Y. W. and N. Abdulah. 1999. The role of rumen fungi in fibre digestion. Asian-Aust. J. Anim. Sci. 12:104-112. https://doi.org/10.5713/ajas.1999.104
  20. Hodrova, B., J. Kopecny and J. Kas. 1998. Cellulolytic enzymes of rumen anaerobic fungi Orpinomyces joyonii and Caecomyces communis. Res. Microbiol. 149:417-427. https://doi.org/10.1016/S0923-2508(98)80324-0
  21. Hungate, R. E. 1969. A roll-tube method for cultivation of strict anaerobes. Methods Microbiol. 3B:117-132.
  22. Iiyama, K., T. B. T. Lam and B. A. Stone. 1994. Covalent crosslinks in the cell wall. Plant Physiol. 104:315-320.
  23. Lowe, S. E., M. K. Theodorou and A. P. J. Trinci. 1987. Cellulases and xylanase of an anaerobic rumen fungus grown on wheat straw holocellulose, cellulose and xylan. Appl. Environ. Microbiol. 53:1216-1223.
  24. Orpin, C. G. and K. N. Joblin. 1988. The rumen anaerobic fungi. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson). London, Elsevier Applied Science Publishers, pp 129-150.
  25. Orpin, C. G. 1975. Studies on the rumen flagellate Neocallimastix frontalis. J. Gen. Microbiol. 91:249-262. https://doi.org/10.1099/00221287-91-2-249
  26. Orpin, C. G. 1976. Studies on the rumen flagellate Sphaeromonas communis. J. Gen. Microbiol. 94:270-280. https://doi.org/10.1099/00221287-94-2-270
  27. Orpin, C. G. 1977. Invasion of plant tissue in the rumen by the flagellate Neocallimastix frontalis. J. Gen. Microbiol. 98:423-430. https://doi.org/10.1099/00221287-98-2-423
  28. Orskov, E. R. 1975. Manipulation of rumen fermentation for maximum food utilisation. World Rev. Nutr. Diet. 22:152-182.
  29. Panagiotou, G., R. Olavarria and L. Olsson. 2007. Penicillium brasilianum as an enzyme factory; the essential role of feruloyl esterases for the hydrolysis of the plant cell wall. J. Biotechnol. 130:219-228. https://doi.org/10.1016/j.jbiotec.2007.04.011
  30. Phillips, M. W. and G. L. R. Gordan. 1988. Sugar and polysaccharide fermentation by rumen anaerobic fungi from Australia, Britain and New Zealand. Biosystems 21:377-383. https://doi.org/10.1016/0303-2647(88)90036-6
  31. Saad, W. Z., N. Abdullah, A. R. Alimon and H. Y. Wan. 2008. Effects of phenolic monomers on the enzyme activities and volatile fatty acids production of Neocallimastix frontalis B9. Anaerobe 14:118-122. https://doi.org/10.1016/j.anaerobe.2007.10.003
  32. Sancho, A. I., B. Bartolome, C. Gomez-Cordoves, G. Williamson and C. B. Faulds. 2001. Release of ferulic acid from cereal residues by barley enzymatic extracts. J. Cereal Sci. 34:173-179. https://doi.org/10.1006/jcrs.2001.0386
  33. Sarangi, P. K., H. P. Sahoo, S. Ghosh and A. Mitra. 2009. Biotransformation of ferulic acid into vanillin by a Streptomyces isolate S10. Asian J. Microbiol. Biotechnol. Environ. Sci. 11:273-278.
  34. SAS. 1999. Statistical analytical system users guide. Statistical Analysis Institute, Cary, NC, USA.
  35. Tripathi, V. K., J. P. Sehgal, A. K. Puniya and K. Singh. 2007. Hydrolytic activities of anaerobic fungi from wild blue bull (Boselaphus tragocamelus). Anaerobe 13:36-39. https://doi.org/10.1016/j.anaerobe.2006.11.001
  36. Ushida, K., H. Matsui, Y. Fujino and J. K. Ha. 1997. Role and potential of ruminal fungi in fiber digestion. Asian-Aust. J. Anim. Sci. 10:541-550. https://doi.org/10.5713/ajas.1997.541
  37. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  38. Varga, G. A. and E. S. Kolver. 1997. Microbial and animal Limitations to fiber digestion and utilization. J. Nutr. 127:819S-823S.
  39. Wang, Y. and T. A. McAllister. 2002. Rumen microbes, enzymes and feed digestion - a review. Asian-Aust. J. Anim. Sci. 15:1659-1676. https://doi.org/10.5713/ajas.2002.1659
  40. White, B. A., R. I. Mackie and K. C. Doerner. 1993. Enzymatic hydrolysis of forage cell walls. In: Forage Cell Wall Structure and Digestibility (Ed. H. G. Jung, D. R. Buxton, R. D. Hatfield and J. Ralph). Madison, WI: American Society of Agronomy, pp. 455-484.
  41. Xie, C. Y. 2007. The role of ferulic acid esterase in cell wall degradation of feedstuffs and feed-use multienzyme cocktail screening out for ruminant. Master dissertation. China Agricultural University. Beijing, China.
  42. Yang, H. J., Q. Yue, Y. C. Cao, D. F. Zhang and J. Q. Wang. 2009. Effects of crude feruloyl and acetyl esterase solutions of Neocallimastix sp. YQ1 and Anaeromyces sp. YQ3 isolated from Holstein steers on hydrolysis of Chinese wildrye grass hay, wheat bran, maize bran, wheat straw and corn stalk. Anim. Feed Sci. Technol. 154:218-227. https://doi.org/10.1016/j.anifeedsci.2009.09.006
  43. Yue, Q., H. J. Yang, Y. C. Cao, D. F. Zhang, Y. H. Jiang and J. Q. Wang. 2009. Feruloyl and acetyl esterase production of an anaerobic rumen fungus Neocallimastix sp. YQ2 effected by glucose and soluble N supplementations and its potential in the hydrolysis of fibrous feedstuffs. Anim. Feed Sci. Technol. 153:263-277. https://doi.org/10.1016/j.anifeedsci.2009.06.019

Cited by

  1. The modification of glucose levels and N source in the Hungate's medium to stimulate the production of fibrolytic enzymes of Anaeromyces sp. YQ3 grown on corn stalks vol.171, pp.2, 2011, https://doi.org/10.1016/j.anifeedsci.2011.10.009