DOI QR코드

DOI QR Code

Effect of Intermediate Metal on the Methanol Gas Sensitivity of ITO Thin Films

층간금속층에 따른 ITO 박막의 메탄올 검출민감도 개선 효과

  • Lee, H.M. (School of Materials Science and Engineering, Ulsan University) ;
  • Heo, S.B. (School of Materials Science and Engineering, Ulsan University) ;
  • Kong, Y.M. (School of Materials Science and Engineering, Ulsan University) ;
  • Kim, Dae-Il (School of Materials Science and Engineering, Ulsan University)
  • 이학민 (울산대학교 첨단소재공학부) ;
  • 허성보 (울산대학교 첨단소재공학부) ;
  • 공영민 (울산대학교 첨단소재공학부) ;
  • 김대일 (울산대학교 첨단소재공학부)
  • Received : 2011.02.15
  • Accepted : 2011.04.13
  • Published : 2011.05.30

Abstract

ITO thin films and gold (Au), copper (Cu) and nickel (Ni) intermediate ITO multilayer (ITO/Au/ITO, ITO/Cu/ITO, ITO/Ni/ITO) films were deposited on glass substrates with a reactive radio frequency and direct current magnetron sputtering system and then the effect of intermediate metal layer and annealing temperature on the methanol gas sensitivity of ITO films were investigated. Although both ITO and ITO/metal/ITO (IMI) film sensors have the same total thickness of 100 nm, IMI sensors have a sandwich structure of ITO 50 nm/metal 10 nm/ITO 40 nm. The change in the gas sensitivity of the film sensors caused by methanol gas ranging from 100 to 1000 ppm was measured at room temperature. The IAI film sensors showed the higher sensitivity than the other sensors. Finally, it is concluded that the ITO 50/Au 10/ITO 40 nm film sensors hasthe potential to be used as improved methanol gas sensor.

RF 마그네트론 스퍼터와 DC 마그네트론 스퍼터를 병행하여 ITO/Au/ITO, ITO/Cu/ITO, 그리고 ITO/Ni/ITO 박막을 유리기판 위에 증착하였다. 증착 후 진공열처리를 통하여 층간 금속 층이 ITO박막의 메탄올 검출 민감도에 미치는 영향을 분석하였다. 모든 박막센서의 두께는 100 nm로 동일하게 ITO 50 nm/metal 10 nm/ITO 40 nm로 제작되었고 메탄올 농도는 100에서 1,000 ppm까지 달리하였다. ITO/Au/ITO 박막센서가 가장 높은 민감도를 보임으로써 ITO/Au/ITO 다층박막이 기존의 ITO메탄올 센서를 대체할 수 있는 센서임을 확인하였다.

Keywords

References

  1. A. Salehi, Sens. Actuators B 96, 88 (2003). https://doi.org/10.1016/S0925-4005(03)00490-8
  2. M. Fleischer and H. Meixner, Sens. Actuators B43, 1 (1997). https://doi.org/10.1016/S0925-4005(97)00114-7
  3. V. Vaishnav, P. Patel, and N. Patel, Thin Solid Films 490, 94 (2005). https://doi.org/10.1016/j.tsf.2005.04.006
  4. J. Park, J. Chae, and D. Kim, J. Alloy Comp. 478,330 (2009). https://doi.org/10.1016/j.jallcom.2008.11.065
  5. Y. Kim, Y. -S. No, D. -H. Park, J. Choi, K. -H.Chae, T. Kim, and W. -K. Choi, J. Korean Vacuum Soc. 19, 475 (2010). https://doi.org/10.5757/JKVS.2010.19.6.475
  6. Y. Kim, J. Park, and D. Kim, Vacuum 82, 574(2008). https://doi.org/10.1016/j.vacuum.2007.08.011
  7. L. Meng, J. Gao, R. Silva, and S. Song, Thin Solid Films 516, 5454 (2008). https://doi.org/10.1016/j.tsf.2007.07.071
  8. H. Mbarek, M. Seadoun, and B. Bessais. Mater. Sci. Eng C 26, 500 (2006). https://doi.org/10.1016/j.msec.2005.10.037
  9. D. Kim, J. Alloy Comp. 493, 208 (2010). https://doi.org/10.1016/j.jallcom.2009.12.056
  10. Y. Kong, S. Heo, H. Lee, and D. Kim, Kor. J. Mater. Res. 20, 42 (2010). https://doi.org/10.3740/MRSK.2010.20.1.042

Cited by

  1. Effect of Ar Ion Irradiation on the Hydrogen Gas Sensitivity of SnO2Thin Films vol.25, pp.6, 2012, https://doi.org/10.12656/jksht.2012.25.6.279
  2. Effect of Post Deposition Annealing Temperature on the Hydrogen Gas Sensitivity of SnO2Thin Films vol.25, pp.5, 2012, https://doi.org/10.12656/jksht.2012.25.5.239