DOI QR코드

DOI QR Code

50 nm 이상의 CMOS 기술에 이용되는 Spin-on Dielectric 박막 형성과 그 특성에 미치는 전구체의 영향

The Effects of Precursor on the Formation and Their Properties of Spin-on Dielectric Films Used for Sub-50 nm Technology and Beyond

  • 이완규 (나노종합팹센터 NIT 융합팀)
  • Lee, Wan-Gyu (Department of Nano Convergence, National NanoFab Center)
  • 투고 : 2011.02.06
  • 심사 : 2011.04.28
  • 발행 : 2011.05.30

초록

탄소가 없는 폴리실라잔 계와 탄소가 함유된 폴리메틸 실라잔 계 전구체를 실리콘 기판에 스핀코팅하고 $150^{\circ}C$, $400^{\circ}C$, $850^{\circ}C$에서 열처리하여 형성된 박막의 물리적 화학적 특성을 평가하였다. 프리에 변환 적외선 분광, 수축 율, 갭-충진, 식각속도 등을 평가하여 박막형성과 형성된 박막의 물리화학적 특성에 미치는 탄소의 영향을 고찰하였다. 탄소함유 전구체는 (탄소가 없는 전구체보다) $400^{\circ}C$에서 질소, 수소, 탄소의 휘발량이 더 적고 산소 흡수량이 더 적어서 (15.6%)보다 낮은 14.5% 두께 수축을 나타내었으나, $800^{\circ}C$에서는 휘발 량이 더 많고 산소 흡수량도 더 많아져 (19.4%)보다 높은 37.4% 두께 수축을 나타냈다. 프리에 변환 적외선 분광분석결과, 전구체내의 탄소는 Spin-on dielectric (SOD) 박막으로 하여금 Si-O 결합형성을 적게, 박막특성을 불균일하게, 그리고 화학 용액에 더 빨리 식각되도록 만들었다.

Polysilazane and polymethylsilazane based precursor films were deposited on Si-substrate by spin-coating, subsequently annealed at $150{\sim}850^{\circ}C$, and characterized. Structural analysis, shrink, compositional change, etch rate, and gap-filling were observed. Annealing the precursor films led to formation of spin-on dielectric films. C-containing precursor films showed that less loss of N, H, and C while less gain of O than that of C-free precursor films at $400^{\circ}C$, but more loss of N, H, and C while more gain of O at $850^{\circ}C$. Thus polysilazane based precursor films exhibited less reduction in thickness of 14.5% than silazane based one of 15.6% at $400^{\circ}C$ but more 37.4% than 19.4% at $850^{\circ}C$. FTIR indicated that C induced smaller amount of Si-O bond, non-uniform property, and lower resistance to chemical etching.

키워드

참고문헌

  1. R. Weis, K. Hummler, H. Akatsu, S. Kudelka, T.Dyer, M. Seitz, A. Schoz, B. Kim, M. Wise, R.Malik, J. Strane, Th. Goebel, K. McStay, J. Beintner,N. Arnold, R. Gerber, B. Liegl, A. Knorr, L.Economikos, A. Simpson, W. Yan, D. Dobuzinsky,J. Mandelman, L. Nesbit, C. J. Radens, R.Divakaruni, W. Bergner, G. Bronner, and W.Mueller, IEDM 1, 415 (2001).
  2. A. Das, A. Klipp, H. -P. Sperlich, and R. Nitsche,ECS Transactions 1, 117 (2006).
  3. S. H. Shin, S. H. Lee, Y. S. Kim, J. H. Heo, D.I. Bae, S. H. Hong, S. H. Park, J. W. Lee, J. G.Lee, J. H. Oh, M. S. Kim, C. H. Cho, T. Y. Chung,and K. Kim, J. Korean Phys. Soc. 43, 887 (2003).
  4. J. W. Kim, J. J. Hoe, J. H. Ko, J. M. Lee, andJ. H. Kwak, The 15th Korean Conference on Semiconductors, Bo Kwang Phoenix, Kangwon, Korea, Feb. FP2-33 (2008).
  5. J. R. Davis, Jr. A. Rohatgi, R. H. Hopkins, P. D.Blais, P. Rai-choudhury, J. R. McCormick, and H.C. Mollenkoff, IEEE Trans. Electron Device 27,677 (1980). https://doi.org/10.1109/T-ED.1980.19922
  6. K. Nagata, D. Kosemura, M. Takei, H. Akamatsu,M. Hattori, T. Koganezawa, M. Machida, J. Son,I. Hirosawa, T. Nishita, T. Shiozawa, D. Katayama,Y. Sato, Y. Hirota, and A. Oguta, ECS Transactions28, 347 (2010).
  7. H. C. Floresca, J. G. Wang, M. J. Kim, and J. A.Smythe, Appl. Phys. Lett. 93, 143116 (2008). https://doi.org/10.1063/1.2999589
  8. http://www.itrs.net, International Technology Roadmap for Semiconductors, (2010).
  9. S. K. Rha, S. C. Chung, J. K. Lee, J. W. Kim,J. E. Hong, and W. J. Lee, J. Korean Vacuum Soc.9, 69 (2000).
  10. M. Baklanov, M. Green, and K. Maex, Dielectric Films for Advanced Microelectronics (John Wiley & Sons Ltd, Chichester, 2007), pp. 18-21.