DOI QR코드

DOI QR Code

Synthesis and Photoluminescence Properties of Blue Phosphor Y1-xBO3:Cex3+

청색 형광체 Y1-xBO3:Cex3+의 합성과 발광 특성

  • Cho, Shin-Ho (Center for Green Fusion Technology and Department of Electronic Materials Engineering, Silla University)
  • 조신호 (녹색융합기술센터, 신라대학교 공과대학 전자재료공학과)
  • Received : 2011.02.02
  • Accepted : 2011.03.29
  • Published : 2011.05.30

Abstract

$Y_{1-x}BO_3:Ce_x^{3+}$ ceramic phosphors were synthesized with changing the concentration of $Ce^{3+}$ ion by using a solid-state reaction method. The crystal structure, surface morphology, and optical properties of the blue phosphors were investigated by using X-ray diffractometer (XRD), scanning electron microscopy, and photoluminescence and photoluminescence excitation spectrophotometry, respectively. The XRD results showed that the main peak of the phosphor powders occurs at (401)와 ($31\bar{2}$) planes. As for the optical properties, the excitation spectrum occurred at 243 nm and the value of blue emission intensity peaking at 469 nm reached the maximum when the concentration of $Ce^{3+}$ ion was 0.10 mol.

$Y_{1-x}BO_3:Ce_x^{3+}$ 세라믹 청색 형광체를 고상 반응법을 사용하여 $Ce^{3+}$ 이온의 농도를 변화시키면서 합성하였다. 청색 형광체의 결정 구조, 표면 형상과 광학 특성은 각각 X-선 회절 장치(XRD), 주사전자현미경, 광여기 및 발광 분광기를 사용하여 측정하였다. XRD 결과로부터 합성된 모든 형광체 분말의 주 피크는 (401)와 ($31\bar{2}$)면에서 발생한 회절 신호이었다. 광학 특성의 경우에, $Ce^{3+}$ 이온의 농도비가 0.10 mol일 때 여기 스펙트럼은 243 nm에서 발생하였고, 469 nm에 피크를 갖는 최대의 청색 형광 스펙트럼이 관측되었다.

Keywords

References

  1. J. Zhang and J. Lin, J. Cryst. Growth 271, 207(2004). https://doi.org/10.1016/j.jcrysgro.2004.07.065
  2. J. C. Zhang, Y. H. Wang, and X. Guo, J. Lumin.122, 980 (2007). https://doi.org/10.1016/j.jlumin.2006.01.344
  3. Y. P. Naik, M. Mohapatra, N. D. Dahale, T. K. Seshagiri, V. Natarajan, and S. V. Godbole, J. Lumin. 129, 1225 (2009). https://doi.org/10.1016/j.jlumin.2009.06.001
  4. Y. Chen, J. Wang, X. Zhang, G. Zhang, M. Gong,and Q. Su, Sens. Actuators B 148, 259 (2010). https://doi.org/10.1016/j.snb.2010.04.030
  5. L. Zhou, J. Shi, and M. Gong, J. Phys. Chem. Solids 68, 1471 (2007). https://doi.org/10.1016/j.jpcs.2007.03.014
  6. J. K. Park, M. A. Lim, C. H. Kim, H. D. Park,J. T. Park, and S. Y. Choi, Appl. Phys. Lett. 82,683 (2003). https://doi.org/10.1063/1.1544055
  7. R. Selomulya, S. Ski, K. Pita, C. H. Kam, Q. Y.Zhang, and S. Buddhudu, Mater. Sci. Eng. B 100,136 (2003). https://doi.org/10.1016/S0921-5107(03)00084-9
  8. G. Chadeyron-Bertrand, D. Boyer, C. Dujardin, C.Mansury, and R. Mahiou, Nucl. Instrum. Methods Phys. Res. B 229, 232 (2005). https://doi.org/10.1016/j.nimb.2004.11.029
  9. Z. Li, J. Zeng, C. Chen, and Y. Li, J. Cryst. Growth286, 487 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.085
  10. C. H. Lu, C. H. Huang, and B. M. Cheng, J. Alloys Compd. 473, 376 (2009). https://doi.org/10.1016/j.jallcom.2008.05.081
  11. M. A. Flores-Gonzalez, G. Ledoux, S. Roux, K.Lebbou, P. Perriat, and O. Tillement, J. Solid State Chem. 178, 989 (2005). https://doi.org/10.1016/j.jssc.2004.10.029
  12. S. Xu, L. Sun, Y. Zhang, H. Ju, S. Zhao, D. Deng,H. Wang, and B. Wang, J. Rare Earths 27, 327 (2009). https://doi.org/10.1016/S1002-0721(08)60244-6
  13. N. Zhang, D. Wang, L. Li, Y. Meng, X. Zhang,and N. Ming, J. Rare Earths 24, 294 (2006). https://doi.org/10.1016/S1002-0721(06)60112-9
  14. C. Liu, R. Yu, Z. Xu, J. Cai, X. Yan, and X. Luo,Trans. Nonferrous Met. Soc. China 17, 1093(2007). https://doi.org/10.1016/S1003-6326(07)60231-3

Cited by

  1. Effects of Eu3+Concentration on the Photoluminescence Properties of Y1-xPO4:Eux3+Red Phosphor vol.20, pp.6, 2011, https://doi.org/10.5757/JKVS.2011.20.6.430
  2. Synthesis and Luminescent Properties of Sm3+-doped GdVO4Phosphors vol.21, pp.2, 2012, https://doi.org/10.5757/JKVS.2012.21.2.93